检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北电力大学自动化工程学院,吉林省吉林市132012 [2]广州华润热电有限人司,广州市511455
出 处:《电力建设》2014年第3期97-101,共5页Electric Power Construction
摘 要:燃煤电厂的锅炉燃烧系统是一个复杂而又重要的系统,建立其精确、普适的模型很困难。首先对现场采集的锅炉燃烧系统输入输出数据进行处理和优选,以用于燃烧系统的建模;然后将一种新型的递归神经网络———回声状态网络(echo state network,ESN)进行改进,提高了网络的精度和适应性,并且将改进的回声状态网络应用于燃烧系统静态建模,与其他4种神经网络建立的静态模型比较,前者适应性更强;最后将改进的回声状态网络应用于锅炉燃烧系统的动态建模,与静态建模相比,模型的适应性更好,能够进行长时间的预测。: The boiler combustion system in coal-fired power plant is a so complicated and important system that it is difficult to build a precise and adaptable model for it. First, the input and output data of combustion system collected from the scene was processed and selected for the combustion system modeling. Second, the Echo State Network (ESN), which was a new type of Recurrent Neural Network, was improved and its precision and adaptability were increased. Then, the improved ESN was applied to building static model of combustion system, which had best adaptability compared with models founded with other four Neural Networks. Last, the improved ESN was applied to building dynamic model of combustion system, which had better adaptability and was more suitable for long-time prediction compared with static model.
关 键 词:燃煤电厂 锅炉燃烧系统 回声状态网络(ESN) 静态模型 动态模型
分 类 号:TM621.2[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.66