机构地区:[1]Tsinghua National Laboratory for Information Science and Technology, Department of Automation,Tsinghua University [2]High-Tech Institute of Xi'an
出 处:《Science China(Information Sciences)》2014年第4期38-48,共11页中国科学(信息科学)(英文版)
基 金:supported in part by National Basic Research Program of China(973)(Grant Nos.2013CB336600,2012CB316102);Beijing Natural Science Foundation(Grant No.4131003);National Natural Science Foundation of China(Grant Nos.61201187,61179004,61179005,61071222);Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(Grant No.YETP0110);Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education;Tsinghua University Initiative Scientific Research Program(Grant Nos.20121088074,20101082055)
摘 要:We note that some existing algorithms are based on the normalized least-mean square (NLMS) algorithm and aim to reduce the computational complexity of NLMS all inherited from the solution of the same optimization problem, but with different constraints. A new constraint is analyzed to substitute an extra searching technique in the set-membership partial-update NLMS algorithm (SM-PU-NLMS) which aims to get a variable number of updating coefficients for a further reduction of computational complexity. We get a closed form expression of the new constraint without extra searching technique to generate a novel set-membership variable-partial-update NLMS (SM-VPU-NLMS) algorithm. Note that tile SM-VPU-NLMS algorithm obtains a faster convergence and a smaller mean-squared error (MSE) than the existing SM-PU-NLMS. It is pointed out that the closed form expression can also be applied to the conventional variable-step-size partial-update NLMS (VSS-PU-NLMS) algorithm. The novel variable-step-size variable-partial-update NLMS (VSS-VPU-NLMS) algorithm is also verified to get a further computational complexity reduction. Simulation results verify that our analysis is reasonable and effective.We note that some existing algorithms are based on the normalized least-mean square (NLMS) algorithm and aim to reduce the computational complexity of NLMS all inherited from the solution of the same optimization problem, but with different constraints. A new constraint is analyzed to substitute an extra searching technique in the set-membership partial-update NLMS algorithm (SM-PU-NLMS) which aims to get a variable number of updating coefficients for a further reduction of computational complexity. We get a closed form expression of the new constraint without extra searching technique to generate a novel set-membership variable-partial-update NLMS (SM-VPU-NLMS) algorithm. Note that tile SM-VPU-NLMS algorithm obtains a faster convergence and a smaller mean-squared error (MSE) than the existing SM-PU-NLMS. It is pointed out that the closed form expression can also be applied to the conventional variable-step-size partial-update NLMS (VSS-PU-NLMS) algorithm. The novel variable-step-size variable-partial-update NLMS (VSS-VPU-NLMS) algorithm is also verified to get a further computational complexity reduction. Simulation results verify that our analysis is reasonable and effective.
关 键 词:adaptive filter NLMS algorithm date-selective partial update set-membership filtering compu-tational complexity
分 类 号:TN713[电子电信—电路与系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...