Spatially Resolved N2(A3Σ+u, ν=0) Decay Studies in the Pulsed Direct-Current Nitrogen Discharge using the Laser-Induced-Fluorescence Technique  

Spatially Resolved N2(A3Σ+u, ν=0) Decay Studies in the Pulsed Direct-Current Nitrogen Discharge using the Laser-Induced-Fluorescence Technique

在线阅读下载全文

作  者:FENG Chun-Lei YANG Hong-Liang GAO Liang DING Hong-bin 

机构地区:[1]School of Physics and Optoelectronic Engineering, Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024

出  处:《Chinese Physics Letters》2014年第3期107-110,共4页中国物理快报(英文版)

基  金:Supported by the National Natural Science Foundation of China under Grant Nos 11175035 and 10875023, the National Magnetic Confinement Fusion Science Program under Grant No 2013GB109005, the Chinesisch-Deutsches Forschungsprojekt under Grant No GZ768, the Fundamental Research Funds for the Central Universities under Grant No DUT12ZD(G)01, and the MMLAB Research Project under Grant No DP1051208.

摘  要:We focus on the investigation of the spatial distribution and temporal evolution of N2(A3Σ+u, ν=0) in a very early afterglow of a pulsed dc nitrogen discharge. The results indicate that a fast quenching process of N2(A3Σ+u, ν=0) exists in the very early afterglow. We study the dependence of this fast quenching process on the discharge pressure 20–40 torr. It seems that this fast quenching behavior of N2(A3Σ+u, ν=0) found in our experiment can be ascribed to the combined action of pooling reaction and collisions with N atoms through N2(A3Σ+u)+N2(A3Σ+u)→ N2*+N2(N2*=N2(B3Πg, C3Πu, C'3Πu, C"5Πu)) and N2(A3Σ+u)+N(4S)→N(2P)+N2, respectively. Meanwhile, the decay studies of N2(A3Σ+u, ν=0) near the anode and cathode infer that the production of N(4S) atoms does not distribute uniformly along the axis of the discharge gap at relatively low pressure, and this effect becomes gradually inconspicuous with the increasing discharge pressure.We focus on the investigation of the spatial distribution and temporal evolution of N2(A3Σ+u, ν=0) in a very early afterglow of a pulsed dc nitrogen discharge. The results indicate that a fast quenching process of N2(A3Σ+u, ν=0) exists in the very early afterglow. We study the dependence of this fast quenching process on the discharge pressure 20–40 torr. It seems that this fast quenching behavior of N2(A3Σ+u, ν=0) found in our experiment can be ascribed to the combined action of pooling reaction and collisions with N atoms through N2(A3Σ+u)+N2(A3Σ+u)→ N2*+N2(N2*=N2(B3Πg, C3Πu, C'3Πu, C"5Πu)) and N2(A3Σ+u)+N(4S)→N(2P)+N2, respectively. Meanwhile, the decay studies of N2(A3Σ+u, ν=0) near the anode and cathode infer that the production of N(4S) atoms does not distribute uniformly along the axis of the discharge gap at relatively low pressure, and this effect becomes gradually inconspicuous with the increasing discharge pressure.

分 类 号:O641.3[理学—物理化学] TN248.22[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象