检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Institute of Computing Technology,Chinese Academy of Sciences [2]University of Chinese Academy of Sciences
出 处:《Journal of Computer Science & Technology》2014年第2期182-193,共12页计算机科学技术学报(英文版)
基 金:Supported by the Strategic Priority Program of the Chinese Academy of Sciences under Grant No.XDA06010401;the NationalBasic Research 973 Program of China under Grant Nos.2011CB302800,2011CB302502;the Guangdong Talents Program of Chinaunder Grant No.201001D0104726115
摘 要:Sensing is a fundamental process to acquire information in the physical world for computation. Existing models treat a sensing process as an indivisible whole, such that sampling and reconstructing of signals are designed to be highly associated with each other in a unified procedure. These strongly coupled sensing systems are efficient, but usually lack reusability and upgradeability. We propose a functional sensing model called SDR (Sampling-Design-Reconstruction) to decouple a sensing process into two modules: sampling protocol and reconstruction algorithm. The core of this decoupling is a design space, which is a common data structure constructed using functions of the sensing target as prior knowledge, to seamlessly bridge the sampling protocol and reconstruction household electricity usage sensing systems can be successfully algorithm together. We demonstrate that existing types of decoupled by introducing corresponding design spaces.Sensing is a fundamental process to acquire information in the physical world for computation. Existing models treat a sensing process as an indivisible whole, such that sampling and reconstructing of signals are designed to be highly associated with each other in a unified procedure. These strongly coupled sensing systems are efficient, but usually lack reusability and upgradeability. We propose a functional sensing model called SDR (Sampling-Design-Reconstruction) to decouple a sensing process into two modules: sampling protocol and reconstruction algorithm. The core of this decoupling is a design space, which is a common data structure constructed using functions of the sensing target as prior knowledge, to seamlessly bridge the sampling protocol and reconstruction household electricity usage sensing systems can be successfully algorithm together. We demonstrate that existing types of decoupled by introducing corresponding design spaces.
关 键 词:sensing model household electricity usage design space sampling protocol reconstruction algorithm
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15