High-dimensional D.H.Lehmer Problem over Short Intervals  被引量:1

High-dimensional D.H.Lehmer Problem over Short Intervals

在线阅读下载全文

作  者:Zhe Feng XU Tian Ping ZHANG 

机构地区:[1]Department of Mathematics,Northwest University [2]College of Mathematics and Information Science,Shaanxi Normal University

出  处:《Acta Mathematica Sinica,English Series》2014年第2期213-228,共16页数学学报(英文版)

基  金:Supported by National Natural Science Foundation of China(Grant Nos.11001218,11201275);the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20106101120001);the Natural Science Foundation of Shaanxi Province of China(Grant No.2011JQ1010)

摘  要:Letk be a positive integer and n a nonnegative integer,0 〈 λ1,...,λk+1 ≤ 1 be real numbers and w =(λ1,λ2,...,λk+1).Let q ≥ max{[1/λi ]:1 ≤ i ≤ k + 1} be a positive integer,and a an integer coprime to q.Denote by N(a,k,w,q,n) the 2n-th moment of(b1··· bk c) with b1··· bk c ≡ a(mod q),1 ≤ bi≤λiq(i = 1,...,k),1 ≤ c ≤λk+1 q and 2(b1+ ··· + bk + c).We first use the properties of trigonometric sum and the estimates of n-dimensional Kloosterman sum to give an interesting asymptotic formula for N(a,k,w,q,n),which generalized the result of Zhang.Then we use the properties of character sum and the estimates of Dirichlet L-function to sharpen the result of N(a,k,w,q,n) in the case ofw =(1/2,1/2,...,1/2) and n = 0.In order to show our result is close to the best possible,the mean-square value of N(a,k,q) φk(q)/2k+2and the mean value weighted by the high-dimensional Cochrane sum are studied too.Letk be a positive integer and n a nonnegative integer,0 〈 λ1,...,λk+1 ≤ 1 be real numbers and w =(λ1,λ2,...,λk+1).Let q ≥ max{[1/λi ]:1 ≤ i ≤ k + 1} be a positive integer,and a an integer coprime to q.Denote by N(a,k,w,q,n) the 2n-th moment of(b1··· bk c) with b1··· bk c ≡ a(mod q),1 ≤ bi≤λiq(i = 1,...,k),1 ≤ c ≤λk+1 q and 2(b1+ ··· + bk + c).We first use the properties of trigonometric sum and the estimates of n-dimensional Kloosterman sum to give an interesting asymptotic formula for N(a,k,w,q,n),which generalized the result of Zhang.Then we use the properties of character sum and the estimates of Dirichlet L-function to sharpen the result of N(a,k,w,q,n) in the case ofw =(1/2,1/2,...,1/2) and n = 0.In order to show our result is close to the best possible,the mean-square value of N(a,k,q) φk(q)/2k+2and the mean value weighted by the high-dimensional Cochrane sum are studied too.

关 键 词:D. H. Lehmer problem short intervals trigonometric sum character sum Cochrane sum 

分 类 号:O174[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象