Almost Everywhere Convergence of Sequences of Cesàro and Riesz Means of Integrable Functions with Respect to the Multidimensional Walsh System  

Almost Everywhere Convergence of Sequences of Cesàro and Riesz Means of Integrable Functions with Respect to the Multidimensional Walsh System

在线阅读下载全文

作  者:Gyrgy GT 

机构地区:[1]Institute of Mathematics and Computer Science,College of Nyíregyhza

出  处:《Acta Mathematica Sinica,English Series》2014年第2期311-322,共12页数学学报(英文版)

基  金:Supported by project TMOP-4.2.2.A-11/1/KONV-2012-0051

摘  要:The aim of this paper is to prove the a.e.convergence of sequences of the Cesaro and Riesz means of the Walsh–Fourier series of d variable integrable functions.That is,let a=(a1,...,ad):N→Nd(d∈P)such that aj(n+1)≥δsupk≤n aj(k)(j=1,...,d,n∈N)for someδ〉0 and a1(+∞)=···=ad(+∞)=+∞.Then,for each integrable function f∈L1(Id),we have the a.e.relation for the Cesaro means limn→∞σαa(n)f=f and for the Riesz means limn→∞σα,γa(n)f=f for any 0〈αj≤1≤γj(j=1,...,d).A straightforward consequence of our result is the so-called cone restricted a.e.convergence of the multidimensional Cesaro and Riesz means of integrable functions,which was proved earlier by Weisz.The aim of this paper is to prove the a.e.convergence of sequences of the Cesaro and Riesz means of the Walsh–Fourier series of d variable integrable functions.That is,let a=(a1,...,ad):N→Nd(d∈P)such that aj(n+1)≥δsupk≤n aj(k)(j=1,...,d,n∈N)for someδ〉0 and a1(+∞)=···=ad(+∞)=+∞.Then,for each integrable function f∈L1(Id),we have the a.e.relation for the Cesaro means limn→∞σαa(n)f=f and for the Riesz means limn→∞σα,γa(n)f=f for any 0〈αj≤1≤γj(j=1,...,d).A straightforward consequence of our result is the so-called cone restricted a.e.convergence of the multidimensional Cesaro and Riesz means of integrable functions,which was proved earlier by Weisz.

关 键 词:Walsh system d-dimensional Fejer and Riesz means SUBSEQUENCE almost everywhereconvergence 

分 类 号:O174.21[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象