对地下管廊无线传感器网络LEACH协议的改进  被引量:4

An Improved LEACH Protocol for Wireless Sensor Networks in Underground Pipe Gallery

在线阅读下载全文

作  者:王丹丹[1] 王姮[1] 张华[1] 

机构地区:[1]西南科技大学信息工程学院机器人技术重点实验室,四川绵阳621010

出  处:《哈尔滨理工大学学报》2014年第1期40-44,共5页Journal of Harbin University of Science and Technology

基  金:四川省科技支撑计划项目(2013GZ0152);四川省教育厅项目(13ZA0164);国防重点学科实验室项目(11ZXNK02)

摘  要:针对无线传感器网络应用于地下管廊环境中由于能耗不均而引起生存周期短的问题,通过研究LEACH(low energy adaptive clustering hierarchy)路由协议及其应用,分析LEACH协议用于地下管廊环境的不足,提出了LEACH协议改进算法.改进的LEACH协议考虑了剩余能量对概率阈值的影响、引入半径竞争机制来实现簇首的高剩余能量、非均匀分布;数据传输阶段,改进算法采用设定单跳的传输阈值、选取多跳最低能耗传输路径的方式来降低网络能耗.仿真结果表明:在长带状网络中,与原有协议相比,改进LEACH协议的网络生存周期延长了2.66倍,相同轮数下该协议降低了能耗.Abstract:In view of the problem short network lifetime caused by uneven energy consumption in wireless sen- sor network application to underground pipe gallery, we researched the Low Energy Adaptive Clustering Hierarchy protocol and the related application, analyzed the deficiency of the Low Energy Adaptive Clustering Hierarchy pro- tocol for underground pipe gallery environment, and proposed algorithm to improve the Low Energy Adaptive Clus- tering Hierarchy protocol. The improved protocol considered the impact of the nodes' residual energy on the proba- bility threshold in cluster head selection, and added competition mechanism to achieve the cluster head' s high re- sidual energy and uneven distribution. In steady-state phase, the algorithm set one-hop transmission threshold, se- lected the minimum energy consume path in multi-hop transmission to reduce the network energy consumption. Simulation results showed that, in the long ribbon network, compared with the original protocol the network lifetime improved by 2.66 times and energy consumption was reduced in the same round by using the promoted the Low En- ergy Adaptive Clustering Hierarchy.

关 键 词:LEACH协议 无线传感器网络 非均匀分簇 能量均衡 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象