检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:康有[1] 陈元芳[1] 顾圣华 姚欣明 黄琴[1] 汤艳平[1]
机构地区:[1]河海大学水文水资源学院,江苏南京210098 [2]上海市水文总站,上海200232
出 处:《水电能源科学》2014年第3期34-38,共5页Water Resources and Power
基 金:教育部中央高校基金项目(2012-2014);水利部公益性行业科研专项经费项目(201201068)
摘 要:针对区域水资源可持续利用评价中指标多、噪声复杂和非线性的特点以及传统方法缺乏可操作性、难以解决稳健性低和过学习等问题,介绍了一种稳健性较高的智能学习方法——随机森林,将其应用于区域水资源可持续利用评价中,并以汉中盆地平坝区为例,对该方法的评价效果进行了验证。结果表明,与SP插值、人工神经网络(ANN)和支持向量机(SVM)模型评价结果相比,本文方法实用性强、稳健性较高、泛化性能高,在分类预测阶段和交叉验证阶段分类准确率均高达100%;同时可知,在影响区域水资源可持续利用的各评价指标中,水资源利用率和人均供水量的影响较为重要。In connection with the problems of the characteristics of more indicators, complex noise and nonlinear in the sustainable utilization level assessment of regional water resources, as well as lacking maneuverability, poor robustness and over-fitting of the traditional assessment methods, an new assessment model based on random forest (RF) which is more robust intelligent learning method was put forward in this paper and applied to assess sustainable utilization of regional water resources in Hanzhong basin in China. Compared with assessment results of the SP method, artificial neural networks and support vector machine model, it shows that the new method was more practical, stronger robustness and generalization. Especially in the model classification prediction phase and cross validation phase ,the classification accuracy rates are up to 100% . And we also draw a conclusion that among all explanatory variable which affect sustainable utilization of regional water resources, the factors of the utilization of water resource and the supply of water re sources per person are more important.
分 类 号:TV213.4[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.193.237