检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ying-tao LIU Yi LI Zi-fu HUANG Zhi-jian XU Zhuo YANG Zhu-xi CHEN Kai-xian CHEN Ji-ye SHI Wei-lia ng ZHU
机构地区:[1]Drug Discovery and Design Center, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy ofSciences, Shanghai 201203, China [2]Informatics Department, UCB Pharma, 216 Bath Road, Slough SL1 4EN, UK
出 处:《Acta Pharmacologica Sinica》2014年第3期419-431,共13页中国药理学报(英文版)
摘 要:Aim: To develop a reliable computational approach for predicting potential drug targets based merely on protein sequence. Methods: With drug target and non-target datasets prepared and 3 classification algorithms (Support Vector Machine, Neural Network and Decision Tree), a multi-algorithm and multi-model based strategy was employed for constructing models to predict potential drug targets. Results: Twenty one prediction models for each of the 3 algorithms were successfully developed. Our evaluation results showed that --30% of human proteins were potential drug targets, and--40% of putative targets for the drugs undergoing phase II clinical trials were probably non-targets. A public web server named D3TPredictor (http://www.d3pharma.com/d3tpredictor) was constructed to provide easy access. Conclusion: Reliable and robust drug target prediction based on protein sequences is achieved using the multi-algorithm and multi- model strategy.Aim: To develop a reliable computational approach for predicting potential drug targets based merely on protein sequence. Methods: With drug target and non-target datasets prepared and 3 classification algorithms (Support Vector Machine, Neural Network and Decision Tree), a multi-algorithm and multi-model based strategy was employed for constructing models to predict potential drug targets. Results: Twenty one prediction models for each of the 3 algorithms were successfully developed. Our evaluation results showed that --30% of human proteins were potential drug targets, and--40% of putative targets for the drugs undergoing phase II clinical trials were probably non-targets. A public web server named D3TPredictor (http://www.d3pharma.com/d3tpredictor) was constructed to provide easy access. Conclusion: Reliable and robust drug target prediction based on protein sequences is achieved using the multi-algorithm and multi- model strategy.
关 键 词:drug target protein sequence multi-algorithm and multi-model strategy web server support vector machine NEURALNETWORK decision tree
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.225.66