检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邹念东[1]
机构地区:[1]河北北方学院附属第一医院放疗科,河北张家口075000
出 处:《中国医学物理学杂志》2014年第2期4756-4759,共4页Chinese Journal of Medical Physics
摘 要:目的:找出在各种机头角和医科达物理楔楔形角的情况下,在横断面、冠状面、矢状面形成楔形角的规律,根据这个规律可以在治疗计划设计中机架角选定的情况下找到最佳的机头角和楔形角,使楔形板从调整二维剂量分布提升到调整准三维剂量分布。方法:建立医科达物理楔模型,通过推导和假设得到机头角和楔形角关系的公式,并按照楔形角的定义在计划系统中通过计算对公式做验证。结果:选择两个患者,分别用传统方式和调整机头角和楔形角的方式做治疗计划,两个计划中调整方式比传统方式的剂量均匀性更好,在危及器官保护程度相同的情况下,可以降低MU、提高靶区剂量。结论:采用上述方法,在实际设计计划时可以应用这种关系找到最优化的机头角和楔形角,调整准三维剂量分布。Objective: To find the law of wedge angles in traverse, coronal, sagittal planes at various collimator angles and ELEKTA wedge angles. With the law the best collimator angles and ELEKTA wedge angles can be find in the treatment plan ning when the gantry angles were selected, so the quasi-3D dose distribution in stead of 2D dose distribution can be adjusted. Methods: A ELEKTA wedge model was set up, formulae of the relation between collimator angles and wedge angles were de: rived, supposed, and verificated according to the definition of wedge angle in treatment planning system. Results: For 2 patients, treatment plans were both designed with conventional and adjusted methods. The dose uniformity of the adjusted plans was bet ter than the conventional plans, and MU was decreased, and the target volume close can be increased when the organs at risk were protected same. Conclusions: The optimal collimator angles and wedge angles can be find in the treatment planning with the relation, and quasi-3D dose distribution can be adjusted.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.237.153