检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]滁州学院地理信息与旅游学院,滁州239000
出 处:《干旱区资源与环境》2014年第1期26-31,共6页Journal of Arid Land Resources and Environment
基 金:安徽高等学校省级自然科学研究项目(KJ2013B189);安徽省高校省级科学研究项目(KJ2011Z274)资助
摘 要:为系统地研究干旱半干旱区土壤含水量的反演方法,比较了目前常用的几种高光谱影像土壤含水量反演技术。结果表明:采用EO-1 Hyperion第149波段和197波段构建的光谱特征空间模型与土壤含水量值之间的R2为0.7093,两者存在良好的负相关性;土壤含水量热惯量反演模型整体拟合的R2为0.6149,与SMS拟合结果相比,效果不理想;回归分析模型中,对数变换光谱回归最优,R2值为0.6843。综合分析后,认为光谱特征空间模型对研究区土壤含水量的估测效果最佳。文中研究旨在为干旱半干旱区土壤含水量的更深入研究提供参考。To systematically study the soil moisture content inversion methods in arid and semiarid area,variety of currently popular soil moisture content inversion technologies by hyperspectral remote sensing were compared.The results indicate that the R2between soil moisture content value and spectral feature space model set up by EO-1 Hyperion 149 band and 197 band was 0.7093,and there was some good negative correlation.The whole fitting R2of the thermal inertia inversion model of soil moisture content was 0.6149,and the effect was not ideal compared with SMS fitting results.The logarithmic transformation spectral regression with R20.6843 was the best of regression analysis models.By comprehensive analysis,the soil moisture content estimation results of the spectral feature space model was the best in the study area.This study aimed at providing a reference for further study of soil moisture content in arid and semiarid area.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28