非线性定标方法在炉渣成分分析中的应用  被引量:3

Application of non-linear calibration method in analysis of slag composition

在线阅读下载全文

作  者:贺文干 董凤忠[1] 陈兴龙[1,2] 余嵘华[2] 付洪波[1] 倪志波[1] 王静鸽[1] 汤玉泉[1] 

机构地区:[1]中国科学院安徽光学精密机械研究所,安徽合肥230031 [2]合肥工业大学,安徽合肥230009

出  处:《量子电子学报》2014年第2期213-221,共9页Chinese Journal of Quantum Electronics

基  金:国家自然科学基金(11075184);中科院知识创新工程领域前沿项目资助

摘  要:采用激光诱导击穿光谱技术对炉渣中的Ca、Mg含量进行了定量分析.由于炉渣成分复杂,建立的一元回归关系式往往得不到理想的结果,这时需要考虑多个自变量的回归分析问题。为了分析炉渣中Ca、Mg元素的含量,将炉渣中Mg、Ca、Fe、Si、Al的原子谱线强度以及Mg、Ca的离子谱线强度作为输入向量.由于不同谱线强度相差过大时,会使在计算出的权重系数中不同谱线所占的比重大不相同。为了消除不同谱线强度差距过大的影响,对光谱强度进行标准化处理,把所有谱线强度的值放在了一个相似的范围.综合对比分析了非线性多元函数定标、BP神经网络定标以及径向基网络(RBF神经网络)定标在炉渣成分分析中的作用,并重点分析了RBF神经网络定标相对于传统非线性定标方法的优势.Contents of Ca and Mg in the slag were analyzed quantitatively with laser-induced breakdown spectroscopy (LIBS). Due to the complexity of the slag composition, a regression relationship established often fails to get the desired result, this results in that the problem of multiple variable regression analysis must be considered. In order to analyze the contents of Ca and Mg in the slag, the Mg, Ca, Fe, Si, A1 atomic line intensity and Mg, Ca ion line intensity were used as the input vectors. However, when the absolute line intensity including strong spectral lines and weaker spectral lines was put together as the input vector, the influence of the former will cover up the latter. Spectral intensity needs treated firstly to place all the values of the line intensities in a similar range. The slag composition analysis were then performed and compared using three calibration methods like nonlinear multi-function, BP neural network and radial basis function (RBF) network. In addition, the advantage of the RBF neural network calibration relative to traditional non-linear calibration method was particularly emphasized.

关 键 词:光谱学 激光诱导击穿光谱 标准化 多个自变量 径向基网络 

分 类 号:O437[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象