检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘尊洋[1] 孙晓泉[1] 邵立[1] 汪亚夫[1]
机构地区:[1]电子工程学院脉冲功率激光技术国家重点实验室,安徽合肥230037
出 处:《红外与激光工程》2014年第3期754-761,共8页Infrared and Laser Engineering
基 金:国家重点实验室基金(10J006)
摘 要:为了准确、高效地计算火箭尾焰的红外辐射特性,提出了一种确定火箭尾焰区域的方法。作为基础工作,分别使用FLUENT和有限体积法(FVM)完成尾焰流场和红外辐射的计算。分析了可能用来区分尾焰和周围大气的变量,如温度和组分含量等,并选择CO的质量分数作为阈值变量。即,在选定阈值后,计算尾焰红外辐射时仅考虑CO质量分数大于阈值的区域,忽略小于阈值其区域对整体辐射的影响。分别研究了尾焰尺寸、计算时间和辐射强度随阈值的变化规律,结果表明,随着阈值的减小,尾焰尺寸和计算时间迅速单调增加,尾焰的红外辐射强度不断波动,且波动幅度逐渐变小,最终趋于平稳。另外,算例表明,选择CO质量分数为0.000 5作为阈值可以确定一个比较合理的尾焰计算区域。Aimed at calculating the infrared radiation of a rocket exhaust plume exactly and efficiently, a method for defining the domain of an exhaust plume was reported. As a basic work, the flow field was calculated by using the CFD software FLUENT, and the radiation was calculated by means of Finite Volume Method (FVM). Then, variables that might be able to be used to differentiate an exhaust plume from surrounding atmosphere such as temperature and species composition were studied and the mass fraction of CO was chosen. When calculating the infrared radiation of an exhaust plume, only the part where the CO mass fraction bigger than the threshold was taken into account, and the rest were neglected. The change law of size of calculation domain, calculation time and infrared radiation with thresholds were studied. The results show that, as the threshold decreases, the size of calculation domain and the calculation time increase monotonously and rapidly, while the infrared radiation changes a lot at first and becomes stable at last. Besides, it was indicated by simulation experiments that the CO mass fraction 0.000 5 as the threshold is acceptable to define the calculation domain of the exhaust plume.
分 类 号:TN21[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.42.17