局部不变特征匹配的并行加速技术研究  被引量:15

Speeding up local invariant feature matching using parallel technology

在线阅读下载全文

作  者:王灿进 孙涛[1] 陈娟[1] 

机构地区:[1]中国科学院长春光学精密机械与物理研究所激光与物质相互作用国家重点实验室,吉林长春130033 [2]中国科学院大学,北京100049

出  处:《液晶与显示》2014年第2期266-274,共9页Chinese Journal of Liquid Crystals and Displays

基  金:院地合作(长吉图专项基金)(No.2011CJT0006);吉林科技发展计划项目(No.20126015)

摘  要:针对SIFT、SURF等局部不变特征在大尺寸图像上匹配时过于耗时的问题,将FREAK算子应用于图像匹配中,并提出一种多线程并行加速方法。首先介绍FREAK描述子的特征点的检测、特征描述向量的生成和特征向量的匹配的过程,并分析其优势。其次提出并行处理的2种思路:一是对待匹配图像进行有重叠的分块,对于每一块子图像,开辟新的线程分别进行处理;二是对匹配过程的3个步骤,采用流水线技术进行并行处理,每检测出一个特征点,随即提取出该点的特征向量,然后和模板图像的特征向量集进行匹配。改写SIFT、SURF和FREAK算法进行实验验证,结果证明FREAK计算过程比SIFT和SURF快得多,而并行方法可以在保证匹配精度的同时明显缩短匹配时间。Taking into account the problem that local invariant feature algorithms such as SIFT, SURF take too much time in large images registration, a fast descriptor named FREAK is introduced, and a speeding up method using multi-thread technology is proposed. The process of feature point detec- tion, descriptive characteristics vector generation and feature vector matching of FREAK are intro- duced and their advantages are analyzed. Then,two ideas of parallel processing are proposed. One is to divide large image into overlapping sub-blocks, and for each sub-image, a new thread is opened up. The other is to use pipelining technology for the three step of registration. Once a feature point is de- tected, its feature vector is extracted immediately, and soon it matches with the feature vector set of the template image. Rewriting SIFT, SURF and FREAK for experiment, the experimental result indi- cates that FREAK is faster than the other two algorithms,and our parallel method can greatly econo- mize matching time as well as guarantee the accuracy.

关 键 词:FREAK算子 局部不变特征 图像匹配 并行 流水线技术 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象