基于多视角融合稀疏表示的恐怖视频识别  被引量:7

Horror Video Scene Recognition Based on Multi-View Joint Sparse Coding

在线阅读下载全文

作  者:丁昕苗[1,2] 李兵[2] 胡卫明[2] 郭文[1] 王振翀[3] 

机构地区:[1]山东工商学院,山东烟台 264005 [2]中国科学院自动化研究所、模式识别国家重点实验室,北京 100190 [3]中国矿业大学,北京100083

出  处:《电子学报》2014年第2期301-305,共5页Acta Electronica Sinica

基  金:国家自然科学基金(No.60935002,No.61100142,No.61174007,No.61303086);国家863高技术研究发展计划(No.2012AA012503,No.2012AA012504);山东省自然科学基金(No.ZR2012FL09,No.ZR2011FQ039,No.ZR2011FL009);山东省教育厅高校科研计划(No.J11LG12)

摘  要:现有的基于多示例学习的恐怖视频识别算法都是假设示例间是相互独立的,而忽略了恐怖视频中存在的上下文信息和示例包的统计特性.因此,本文提出了一种多视角融合稀疏表示模型.该模型分别从集合视角、上下文视角以及统计特性视角三个不同的视角来看待一个视频片段,并利用联合稀疏表示框架将三个不同视角融合到一个分类框架中,用来进行恐怖视频的识别.在恐怖视频库上的实验结果验证了算法在恐怖视频识别中比现有的其它算法有更好的性能和稳定性.Along with the ever-growing Web ,horror videos sharing in the Internet has threatened children ’ s psychological health .It is necessary to effectively recognize and filter out these horror videos .So far ,several horror video recognition methods based on Multi-Instance Learning (MIL ) have been proposed .However ,all these methods suppose that the instances in a bag are in-dependent ,ignoring the contextual cue and statistical cue in horror videos .In this paper ,we propose a novel multi-view joint sparse coding model for horror video recognition .This model considers video from three different viewpoints including set view ,contextual view and statistical view .The set view treats a video as a set of independent frames .The context view models the contextual rela-tionship among key frames in a video using an e-graph .The statistical view represents a video as a histogram feature based on bag-of-words model .Then ,three kernel functions are designed for the three viewpoints ,respectively .Finally ,the three kernels are inte-grated into a unified multi-view joint sparse coding classification framework to recognize the horror video scenes based on recon-struction residual .Experiments on a horror video dataset demonstrate that our method’s performance is superior to the other existing algorithms .

关 键 词:恐怖视频 稀疏表示 多视角 核函数 

分 类 号:TP37[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象