检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:付秋娟[1] 王晓婷[2] 葛炯[3] 张怀宝[1] 杜咏梅[1] 侯小东[1] 刘丽丽[2]
机构地区:[1]中国农业科学院烟草研究所,山东青岛266101 [2]山东中烟工业有限责任公司青岛技术中心,山东青岛266101 [3]上海烟草集团有限责任公司,上海200082
出 处:《红外技术》2014年第3期249-254,共6页Infrared Technology
基 金:中国烟草总公司烤烟烟叶原料安全性评价体系研究
摘 要:为实现烟叶原料焦油和烟碱的快速检测,分别用烟丝(111个)和烟末(204个)样品建立了原烟卷烟主流烟气中焦油和烟碱的近红外模型,研究表明两种样品状态均能建立其近红外速测模型,且烟气烟碱的校正模型较好。用烟末建立的焦油和烟碱的校正模型略好于用烟丝建立的模型,其内部交叉验证均方差(RMSECV)分别为0.211和1.90,烟丝内部交叉验证均方差(RMSECV)分别为0.257和2.04。并对样品量较大的烟末模型进行了外部验证,2个模型预测值与标准值的平均相对偏差分别为5.13和5.93,t-检验表明预测值和标准值之间没有显著性差异,且系统精密度良好,可以用于大量样品的快速检测。In order to realize rapid detection of tar and nicotine in the cigarette,the near infrared(NIR) detection model for tar and nicotine in raw tobacco was established by 111 samples of cut tobacco and 204 samples of tobacco powder. The research showed that such NIR rapid detection model for two kinds of tobacco samples could be established, and the nicotine calibration model was better. The calibration model established through tobacco powder was better than which established through cut tobacco. The root mean square error of cross-validation (RMSECV) of the former was 0.211 and 1.90, and the RMSECV of the latter was 0.257 and 2.04. To verify the model established through tobacco powder, the mean relative deviation between the calculated value and the actual value for nicotine and tar was 5.13 and 5.93 respectively. The t-test showed good systematic precision, and there was no significant difference between the calculated value and the actual value, so the NIR model could be applied to rapid detection of mass sample.
分 类 号:TN219[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222