检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北电力大学云南电网公司研究生工作站,昆明650217 [2]云南电网公司电力研究院,昆明650217
出 处:《云南电力技术》2014年第1期44-48,共5页Yunnan Electric Power
摘 要:介绍为了保障节能发电调度中煤耗实时在线监测系统的准确性,减少煤质的复杂性和人为离线输入的不确定性对锅炉效率在线计算造成的偏差,采用统计分析和聚类计算等方法,构建了针对特定区域电厂的煤质数据库的方法。In order to ensure the accuracy of the online monitoring system for coal consumption in the energy - conservation power generation dispatch, a coal quality database for the power plants in a certain area was built based on the method of statistical analysis and clustering caculation to reduce the errors caused by the complex coal quality and the off-line input during the online calculation of the boiler efficiency. The results show that the errors less than 600 kJ/kg between the caculated heat of "virtual coal" and the labo- ratory values can be up to 92. 4%. And the heat obtained from the database matches well with the laboratory values in the power plants in practical application, with the maximum error less than 700 kJ/kg. It can enhance the fairness and impartiality of the online monito- ring system for the power plants in a certain region using the virtual coal database during the online calculation of boiler efficiency.
分 类 号:TQ531[化学工程—煤化学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28