模糊联想记忆网络的全局鲁棒性研究——基于爱因斯坦t-模  被引量:1

Analysis of robustness of fuzzy associative memory based on Einstain's t-norm

在线阅读下载全文

作  者:高翔[1] 马亨冰 

机构地区:[1]福州大学数学与计算机科学学院,福州350108 [2]福建省经济中心,福州350003

出  处:《计算机工程与应用》2014年第5期96-100,107,共6页Computer Engineering and Applications

摘  要:利用三角模的模糊联想记忆网络的性质以及模糊联想记忆网络的鲁棒性定义,对基于爱因斯坦t-模构建的模糊双向联想记忆网络的学习算法的全局鲁棒性进行了分析。从理论上证明了当训练模式的摄动为正向摄动时,该学习算法可以保持良好的鲁棒性,并用实验验证了该结论;而当摄动存在负向波动时该学习算法不满足全局鲁棒性。然后又进一步对训练模式集摄动最大摄动与输出模式集的最大摄动之间的关系进行研究,得出了训练模式集的最大摄动与输出模式集的最大摄动之间的关系曲线。The paper analyses the robustness of learning algorithm for fuzzy associative memory based on Einstain’s t-norm by using the properties of fuzzy bidirectional associative memories based on triangular norms and the overall situation robustness of fuzzy bidirectional associative memories. The conclusion that the learning algorithm can keep good overall robustness when the perturbations are positive is proved in theory and verified by experiment in this paper. And that the learning algorithm doesn’t satisfy overall situation robustness when the noise contains negative value is proved by experi-ment. What is more, the relation between the maximum of perturbations of training patterns and the maximum of perturba-tions of the output is also analyzed and the relation curve is gotten.

关 键 词:爱因斯坦t-模 模糊联想记忆网络 学习算法 全局鲁棒性 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象