检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]福州大学数学与计算机科学学院,福州350108 [2]福建省经济中心,福州350003
出 处:《计算机工程与应用》2014年第5期96-100,107,共6页Computer Engineering and Applications
摘 要:利用三角模的模糊联想记忆网络的性质以及模糊联想记忆网络的鲁棒性定义,对基于爱因斯坦t-模构建的模糊双向联想记忆网络的学习算法的全局鲁棒性进行了分析。从理论上证明了当训练模式的摄动为正向摄动时,该学习算法可以保持良好的鲁棒性,并用实验验证了该结论;而当摄动存在负向波动时该学习算法不满足全局鲁棒性。然后又进一步对训练模式集摄动最大摄动与输出模式集的最大摄动之间的关系进行研究,得出了训练模式集的最大摄动与输出模式集的最大摄动之间的关系曲线。The paper analyses the robustness of learning algorithm for fuzzy associative memory based on Einstain’s t-norm by using the properties of fuzzy bidirectional associative memories based on triangular norms and the overall situation robustness of fuzzy bidirectional associative memories. The conclusion that the learning algorithm can keep good overall robustness when the perturbations are positive is proved in theory and verified by experiment in this paper. And that the learning algorithm doesn’t satisfy overall situation robustness when the noise contains negative value is proved by experi-ment. What is more, the relation between the maximum of perturbations of training patterns and the maximum of perturba-tions of the output is also analyzed and the relation curve is gotten.
关 键 词:爱因斯坦t-模 模糊联想记忆网络 学习算法 全局鲁棒性
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.48