机构地区:[1]LAPC & LAOR,Institute of Atmospheric Physics,Chinese Academy of Sciences
出 处:《Journal of Meteorological Research》2014年第1期139-149,共11页气象学报(英文版)
基 金:Supported by the China Meteorological Administration Special Public Welfare Research Fund(GYHY201206041);National (Key) Basic Research and Development(973)Program of China(2009CB421403);National Natural Science Foundation of China(40905067);Public Science and Technology Research Projects of Ocean(201005017-5);Antarctic and Arctic Environmental Expeditions and Assessment Project(CHINARE2012-02-03 and 2012-04-04)
摘 要:The Tibetan Plateau has substantial impacts on the weather and climate of the Northern Hemisphere, due in large part to the thermal effects of the plateau surface. Surface temperature over the Tibetan Plateau is the most important parameter in determining these thermal effects. We present a method for verifying widely used reanalysis temperature products from NCEP-R2, ERA-Interim, and JRA-25 over the Tibetan Plateau, with the aim of obtaining a reliable picture of surface temperature and its changes over the plateau. Reanalysis data are validated against the topography elevation, satellite observations, and radiosonde data. ERA-Interim provides the most reliable estimates of Tibetan Plateau surface temperature among these three reanalyses. We therefore use this dataset to study the climatology and trends of surface temperature over the Tibetan Plateau. ERA-Interim data indicate a dramatic warming over the Tibetan Plateau from 1979 to 2010, with warming rates of 0.33℃ per decade in annual mean temperature, 0.22℃ per decade in summer and 0.4℃ per decade in winter mean temperatures. Comparison with the results of previous studies suggests that surface warming over the Tibetan Plateau has accelerated during the past 30 years. This warming is distributed heterogeneously across the Tibetan Plateau, possibly due to topographic effects.The Tibetan Plateau has substantial impacts on the weather and climate of the Northern Hemisphere, due in large part to the thermal effects of the plateau surface. Surface temperature over the Tibetan Plateau is the most important parameter in determining these thermal effects. We present a method for verifying widely used reanalysis temperature products from NCEP-R2, ERA-Interim, and JRA-25 over the Tibetan Plateau, with the aim of obtaining a reliable picture of surface temperature and its changes over the plateau. Reanalysis data are validated against the topography elevation, satellite observations, and radiosonde data. ERA-Interim provides the most reliable estimates of Tibetan Plateau surface temperature among these three reanalyses. We therefore use this dataset to study the climatology and trends of surface temperature over the Tibetan Plateau. ERA-Interim data indicate a dramatic warming over the Tibetan Plateau from 1979 to 2010, with warming rates of 0.33℃ per decade in annual mean temperature, 0.22℃ per decade in summer and 0.4℃ per decade in winter mean temperatures. Comparison with the results of previous studies suggests that surface warming over the Tibetan Plateau has accelerated during the past 30 years. This warming is distributed heterogeneously across the Tibetan Plateau, possibly due to topographic effects.
关 键 词:Tibetan Plateau REANALYSIS surface temperature temperature trend
分 类 号:P467[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...