检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Heng CHEN Hai JIN Feng ZHAO
出 处:《Frontiers of Computer Science》2014年第1期119-130,共12页中国计算机科学前沿(英文版)
摘 要:Graph model has been widely applied in docu- ment summarization by using sentence as the graph node, and the similarity between sentences as the edge. In this paper, a novel graph model for document summarization is presented, that not only sentences relevance but also phrases relevance information included in sentences are utilized. In a word, we construct a phrase-sentence two-layer graph structure model (PSG) to summarize document(s) . We use this model for generic document summarization and query-focused sum- marization. The experimental results show that our model greatly outperforms existing work.Graph model has been widely applied in docu- ment summarization by using sentence as the graph node, and the similarity between sentences as the edge. In this paper, a novel graph model for document summarization is presented, that not only sentences relevance but also phrases relevance information included in sentences are utilized. In a word, we construct a phrase-sentence two-layer graph structure model (PSG) to summarize document(s) . We use this model for generic document summarization and query-focused sum- marization. The experimental results show that our model greatly outperforms existing work.
关 键 词:relationship graph Markov random walk doc-ument summarization
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15