O2, CO2, and H2O Chemisorption on UN(001) Surface: Density Functional Theory Study  

O2、CO2和H2O在UN(001)表面化学吸附的密度泛函理论研究

在线阅读下载全文

作  者:李如松 何彬 王飞 许鹏 王华[2] 

机构地区:[1]西安高新技术研究所,洪庆镇,西安710025 [2]中国工程物理研究院,绵阳621900

出  处:《Chinese Journal of Chemical Physics》2014年第1期20-28,I0003,共10页化学物理学报(英文)

基  金:ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.51271198) and Self- Topics Fund of Xi'an Research Institute of High Technology (No.YX2012cxpy06). Ru-song Li would like to thank Wen Li from Xi'an Research Institute of Hi-Tech for useful discussions and studentship support.

摘  要:We performed density functional theory calculations of O2, CO2, and H2O chemisorption on the UN(001) surface using the generalized gradient approximation and PW91 exchangecorrelation functional at non-spin polarized level with the periodic slab model. Chemisorption energies vs. molecular distance from UN(001) surface were optimized for four symmetrical chemisorption sites. The results showed that the bridge parallel, hollow parallel and bridge hydrogen-up adsorption sites were the most stable site for O2, CO2, and H2O molecular with chemisorption energies of 14.48, 4.492, and 5.85 kJ/mol, respectively. From the point of adsorbent (the UN(001) surface), interaction of O2 with the UN(001) surface was of the maximum magnitude, then CO2 and H2O, indicating that these interactions were associated with structures of the adsorbate. O2 chemisorption caused N atoms on the surface to migrate into the bulk, however CO2 and H2O had a moderate and negligible effect on the surface, respectively. Calculated electronic density of states demonstrated the electronic charge transfer between s, p orbital in chemisorption molecular and U6d, U5f orbital.

关 键 词:CHEMISORPTION Density functional theory Geometric relaxation Electronic density of state 

分 类 号:O6[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象