检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Physics, Heze University [2]Key Laboratory of Quantum Communication and Calculation, Heze University [3]Department of Material Science and Engineering, University of Science and Technology of China
出 处:《Chinese Physics B》2014年第3期119-122,共4页中国物理B(英文版)
基 金:Project supported by the National Natural Science Foundation of China(Grant No.11175113);the Natural Science Foundation of Shandong Province of China(Grant No.Y2008A16);the University Experimental Technology Foundation of Shandong Province of China(Grant No.S04W138);the Natural Science Foundation of Heze University of Shandong Province of China(Grants Nos.XY07WL01 and XY08WL03)
摘 要:Based on the generalized Weyl quantization scheme, which relies on the generalized Wigner operator Ok (p, q) with a real k parameter and can unify the P-Q, Q-P, and Weyl ordering of operators in k = 1, - 1,0, respectively, we find the mutual transformations between 6 (p - P) (q - Q), (q - Q) 3 (p - P), and (p, q), which are, respectively, the integration kernels of the P-Q, Q-P, and generalized Weyl quantization schemes. The mutual transformations provide us with a new approach to deriving the Wigner function of quantum states. The - and - ordered forms of (p, q) are also derived, which helps us to put the operators into their - and - ordering, respectively.Based on the generalized Weyl quantization scheme, which relies on the generalized Wigner operator Ok (p, q) with a real k parameter and can unify the P-Q, Q-P, and Weyl ordering of operators in k = 1, - 1,0, respectively, we find the mutual transformations between 6 (p - P) (q - Q), (q - Q) 3 (p - P), and (p, q), which are, respectively, the integration kernels of the P-Q, Q-P, and generalized Weyl quantization schemes. The mutual transformations provide us with a new approach to deriving the Wigner function of quantum states. The - and - ordered forms of (p, q) are also derived, which helps us to put the operators into their - and - ordering, respectively.
关 键 词:generalized Wigner operator generalized Weyl quantization scheme different operator orderingrules mutual transformation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222