Phase separation in Sr doped BiMnO_3  

Phase separation in Sr doped BiMnO_3

在线阅读下载全文

作  者:李冠男 饶光辉 黄清镇 高庆庆 骆军 刘广耀 李静波 梁敬魁 

机构地区:[1]Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences [2]School of Materials Science and Engineering, Guilin University of Electronic Technology [3]NIST center for Neutron Research, National Institute of Standards and Technology [4]School of Materials Science and Engineering, Beijing Institute of Technology

出  处:《Chinese Physics B》2014年第3期446-450,共5页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.11074295 and 50872148);the Natural Science Foundation of Guangxi Province,China(Grant No.2012GXNSFGA060002)

摘  要:Phase separation in Sr doped BiMnO3 (Bil_xSrxMnO3, x = 0.4-0.6) was studied by means of temperature-dependent high-resolution neutron powder diffraction (NPD), high resolution X-ray powder diffraction (XRD), and physical property measurements. All the experiments indicate that a phase separation occurs at the temperature coinciding with the reported charge ordering temperature (Tco) in the literature. Below the reported TCO, both the phases resulting from the phase separation crystallize in the orthorhombically distorted perovskite structure with space group Imma. At lower temperature, these two phases order in the CE-type antiferromagnetic structure and the A-type antiferromagnetic structure, respectively. However, a scrutiny of the high-resolution NPD and XRD data at different temperatures and the electron diffraction exper- iment at 300 K did not manifest any evidence of a long-range charge ordering (CO) in our investigated samples, suggesting that the anomalies of physical properties such as magnetization, electric transport, and lattice parameters at the TCO might be caused by the phase separation rather than by a CO transition.Phase separation in Sr doped BiMnO3 (Bil_xSrxMnO3, x = 0.4-0.6) was studied by means of temperature-dependent high-resolution neutron powder diffraction (NPD), high resolution X-ray powder diffraction (XRD), and physical property measurements. All the experiments indicate that a phase separation occurs at the temperature coinciding with the reported charge ordering temperature (Tco) in the literature. Below the reported TCO, both the phases resulting from the phase separation crystallize in the orthorhombically distorted perovskite structure with space group Imma. At lower temperature, these two phases order in the CE-type antiferromagnetic structure and the A-type antiferromagnetic structure, respectively. However, a scrutiny of the high-resolution NPD and XRD data at different temperatures and the electron diffraction exper- iment at 300 K did not manifest any evidence of a long-range charge ordering (CO) in our investigated samples, suggesting that the anomalies of physical properties such as magnetization, electric transport, and lattice parameters at the TCO might be caused by the phase separation rather than by a CO transition.

关 键 词:phase separation neutron/X-ray powder diffraction charge/orbital order 

分 类 号:O482.5[理学—固体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象