检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University [2]Institute of Microelectronics of Chinese Academy of Sciences
出 处:《Chinese Physics B》2014年第3期493-497,共5页中国物理B(英文版)
基 金:Project supported by the National Natural Science Foundation of China(Grant Nos.60444007,11174008,60325413,and 10774001)
摘 要:By using temperature-dependent current-voltage, variable-frequency capacitance-voltage, and Hall measurements, the effects of the thermal oxidation on the electrical properties of Ni/Au Schottky contacts on lattice-matched Ino.18Alo.82N/GaN heterostructures are investigated. Decrease of the reverse leakage current down to six orders of magni- tude is observed after the thermal oxidation of the Ino.18Alo.82N/GaN heterostructures at 700 ℃. It is confirmed that the reverse leakage current is dominated by the Frenkel-Poole emission, and the main origin of the leakage current is the emis- sion of electrons from a trap state near the metal/semiconductor interface into a continuum of electronic states associated with the conductive dislocations in the InxAll-xN barrier. It is believed that the thermal oxidation results in the formation of a thin oxide layer on the InxAll-xN surface, which increases the electron emission barrier height.By using temperature-dependent current-voltage, variable-frequency capacitance-voltage, and Hall measurements, the effects of the thermal oxidation on the electrical properties of Ni/Au Schottky contacts on lattice-matched Ino.18Alo.82N/GaN heterostructures are investigated. Decrease of the reverse leakage current down to six orders of magni- tude is observed after the thermal oxidation of the Ino.18Alo.82N/GaN heterostructures at 700 ℃. It is confirmed that the reverse leakage current is dominated by the Frenkel-Poole emission, and the main origin of the leakage current is the emis- sion of electrons from a trap state near the metal/semiconductor interface into a continuum of electronic states associated with the conductive dislocations in the InxAll-xN barrier. It is believed that the thermal oxidation results in the formation of a thin oxide layer on the InxAll-xN surface, which increases the electron emission barrier height.
关 键 词:leakage current thermal oxidation Frenkel-Poole emission
分 类 号:TN386[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15