检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘毅[1]
出 处:《科学技术与工程》2014年第6期211-217,共7页Science Technology and Engineering
摘 要:视频对象分割对于行动识别和视频检索等领域具有重要作用。针对现有方案的不足,提出一种新的视频对象分割算法。首先,基于物质度构建出视频主要对象的区域图,然后,视频对象的区域选择被建模为区域图中最大权重派系的寻找问题,为了避免不合理的区域选择所导致的无法求解问题,对同一派系的区域引入两种互斥约束:帧内约束和帧间约束,最后提出了一种新的最大权重派系(MWC)算法来计算满足约束条件的最大加权派系,从而实现视频对象的精确分割。将本文算法用于SegTrack数据库中的多个高难度基准视频进行测试,实验结果表明,本文算法能够实现每帧视频主要对象检测和分割自动化,且分割误差也要明显小于已有的算法。Video object segmentation is important for many potential applications,such as activity recognition and video retrieval.Aiming at the deficiencies of the existing schemes,new video object segmentation is proposed.Firstly,the region graph of the primary video object is build with the material degree,secondly,the region selection problem of video object as the problem of finding constrained Maximum Weight Cliques (MWC),in order to avoid can not solve the problem caused by the unreasonable area selection,two types of mutex constraints on regions in the same clique are introduced:intra-frame and inter-frame constraints.Finally,in order to achieve the accurate segmentation of video objects,a new algorithm is proposed to calculate the MWC satisfy the constraints of the Maximum Weight Cliques.Algorithm is test with the challenging benchmark videos on the SegTrack dataset,the results show that our algorithm can automatically identify the primary object,and segment that object out in every frame,in addition,the Segmentation error of our algorithm is less than the traditional algorithms.
关 键 词:视频对象分割 物质度 区域选择 最大权重派系 互斥约束
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222