检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]移通学院计算机科学系 [2]计算机科学与技术学院,重庆邮电大学400065
出 处:《科学技术与工程》2014年第8期42-48,共7页Science Technology and Engineering
基 金:国家自然科学基金(60842003)资助
摘 要:针对光照变化人脸识别中大多数现有的人脸识别算法只能单独实施降维,或者字典学习而不能完全利用训练样本判别信息的问题,提出了基于判别性降维的字典学习算法。首先,利用经典的特征提取算法PCA初始化降维投影矩阵;然后,计算字典和系数,通过联合降维与字典学习使得投影矩阵和字典更好地相互拟合;最后,利用迭代算法输出字典和投影矩阵,并利用经l2-范数正则化的分类器完成人脸的识别。在PIE及扩展的YaleB两大人脸数据库上得到了验证了所提算法的有效性及可靠性。实验结果表明,相比几种较为先进的线性表示算法,所提算法在处理光照变化人脸识别时取得了更高的识别率。AbstractMost existing face recognition algorithms can not use discriminative information of samples due to they only carry out dimensionality reduction or dictionary learning, for which dictionary learning algorithm based on discriminative dimensionality reduction is proposed. Firstly, typical feature extraction algorithm PCA is used to initialize dimensionality reduction projection matrix. Then, dictionary and coefficient is computed and the dictionary can match with each other by jointing dimension reduction and dictionary learning. Finally, dictionary and projection matrix is outputted by using iterative algorithm, and classifier regularized by 12-norm is used to finish face recognition. The effectiveness and reliability of proposed algorithm has been verified by experiments on PIE and extended YaleB face databases. Experimental results show that proposed algorithm has higher recognition accu- racy than several other advanced linear represent algorithms in dealing with face recognition with illustration varia- tion.
关 键 词:人脸识别 判别性降维(DDR) 字典学习 线性表示 光照变化
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.34.191