检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学综合业务网理论及关键技术国家重点实验室,陕西西安710071
出 处:《西安电子科技大学学报》2014年第2期9-14,共6页Journal of Xidian University
基 金:国家863计划资助项目(2012AA011701);国家科技重大专项基金资助项目(2012ZX03001027-004);国家重点基础研究发展计划资助项目(2012CB316100);国家111计划资助项目(B08038);国家自然科学基金资助项目(61101144和61101145)
摘 要:针对多小区干扰对齐系统的下行链路,在研究基于穷搜索和分布式干扰对齐的最优发射天线选择算法的基础上,提出了一种低复杂度的发射天线选择算法.该算法采用贪心搜索策略,利用部分迭代的分布式干扰对齐方法,在保持其他基站的发射天线选择方案不变的情况下,沿着系统和容量增加的搜索方向依次优化各基站的发射天线选择方案,从而达到降低计算复杂度的目的.复杂度分析及仿真结果表明,在获得接近于最优发射天线选择算法的系统和容量性能的同时,该算法能有效降低计算复杂度,并且通过调整部分迭代次数,可以达到系统和容量性能与计算复杂度的折中.Starting from the investigation of the optimal transmit antenna selection (TAS) algorithm based on the exhaustive search and distributed interference alignment (IA), a low complexity TAS algorithm is proposed for multi-cell IA systems. The proposed algorithm utilizes the greedy search strategy and the distributed IA with partial iterations to reduce the computational complexity. In the proposed algorithm, the TAS scheme for each base station is optimized successively in a way that the system sum capacity is increased under the condition that the TAS schemes for the other base stations remain unchanged. Complexity analysis and simulation results show that the proposed algorithm can sharply reduce the computational complexity while the performance of system sum capacity is close to that of the optimal TAS algorithm. Moreover, by properly choosing the iteration number of partial iterations, the proposed algorithm can achieve an effective tradeoff between system sum capacity and computational complexity.
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200