检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高翔[1,2] 任国春[1,2] 陈瑾[1,2] 丁国如[1,2]
机构地区:[1]解放军理工大学通信工程学院,江苏南京210007 [2]国家短波通信工程技术中心
出 处:《信号处理》2014年第3期289-297,共9页Journal of Signal Processing
基 金:国家自然科学基金面上项目(61172062);国家自然科学基金青年项目(61301160);国家自然科学基金重点项目(60932002);江苏省自然科学基金面上项目(BK2011116)
摘 要:频谱预测是一种通过分析历史频谱数据获得频谱使用规律,从而预测未来频谱使用状态的技术。为了实现快变信道(本文指信道占用状态快速变化)环境下频谱状态的可靠预测,提出了一种基于支持向量回归的频谱预测算法。比较了在不同训练样本数时,该算法与一个典型的BP神经网络频谱预测算法的性能差异,结果表明所提算法在小样本学习时,预测效果更为理想。并在此基础上,加入正确检测概率和虚警概率,验证了当频谱检测不理想条件下,支持向量回归算法预测的可行性。Spectrum prediction is a promising technique to infer future spectrum state from historical spectrum data by exploiting the correlation of spectrum states in time domain.To realize reliable prediction of spectrum state under quickchanging channel occupancy,this article proposes a support vector regression (SVR)-based spectrum prediction algorithm.By adopting three typical distribution models of spectrum state evolution,this article compares the prediction accuracy performance of the proposed algorithm and the existing back propagation (BP) neural network-based spectrum prediction algorithm.Simulation results show that the proposed algorithm has the capability of small sample learning and obtains better prediction accuracy with less training samples.On the basis of the previous study,research on the imperfect training spectrum sample which considering the probability of detection and the probability of false alarm are analyzed.The analysis shows that the prediction accuracy performance of the SVR-based spectrum prediction algorithm still achieves satisfactory result with the imperfect training samples.
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229