Shape retrieval using multi-level included angle functions-based Fourier descriptor  被引量:1

基于多级夹角函数的傅里叶形状描述子(英文)

在线阅读下载全文

作  者:徐国清[1] 穆志纯[1] 徐烨[1] 

机构地区:[1]北京科技大学自动化学院,北京100083

出  处:《Journal of Southeast University(English Edition)》2014年第1期22-26,共5页东南大学学报(英文版)

基  金:The National Natural Science Foundation of China(No.61170116,61375010,60973064)

摘  要:An effective shape signature namely multi-level included angle functions MIAFs is proposed to describe the hierarchy information ranging from global information to local variations of shape.Invariance to rotation translation and scaling are the intrinsic properties of the MIAFs.For each contour point the multi-level included angles are obtained based on the paired line segments derived from unequal-arc-length partitions of contour.And a Fourier descriptor derived from multi-level included angle functions MIAFD is presented for efficient shape retrieval.The proposed descriptor is evaluated with the standard performance evaluation method on three shape image databases the MPEG-7 database the Kimia-99 database and the Swedish leaf database. The experimental results of shape retrieval indicate that the MIAFD outperforms the existing Fourier descriptors and has low computational complexity.And the comparison of the MIAFD with other shape description methods also shows that the proposed descriptor has the highest precision at the same recall value which verifies its effectiveness.为了描述形状由全局信息到局部变化的层次信息,提出一种有效的形状签名,即多级夹角函数.多级夹角函数具有内在的旋转、平移和缩放不变性.对轮廓上每一点,其多级夹角函数通过轮廓的非等弧长分割所得的成对线段计算得到.然后利用多级夹角函数推导出傅里叶描述子,以进行高效的形状检索.使用标准的性能评价方法对所提出的描述子在3个形状图像库上进行了测试,包括MPEG-7图像库、Kimia-99图像库和Swedish树叶图像库.形状检索实验结果表明,基于多级夹角函数的傅里叶描述子优于已有的傅里叶描述子,且具有较低的计算复杂度.与其他类型的形状描述方法相比,所提出的描述子在相同查全率时具有最高的查准率,证明了该描述子的有效性.

关 键 词:shape description image retrieval MULTI-LEVEL included angle function Fourier descriptor 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象