Wavelet transform and gradient direction based feature extraction method for off-line handwritten Tibetan letter recognition  被引量:3

基于小波变换和梯度方向的脱机手写藏文字符特征提取方法(英文)

在线阅读下载全文

作  者:黄鹤鸣[1,2] 达飞鹏[1] 韩晓旭 

机构地区:[1]东南大学自动化学院,南京210096 [2]青海师范大学计算机学院,西宁810008 [3]福坦莫大学计算机与信息科学系,纽约10458

出  处:《Journal of Southeast University(English Edition)》2014年第1期27-31,共5页东南大学学报(英文版)

基  金:The National Natural Science Foundation of China(No.60963016);the National Social Science Foundation of China(No.17BXW037)

摘  要:To improve the recognition accuracy of off-line handwritten Tibetan characters the local gradient direction histograms based on the wavelet transform are proposed as the recognition features.First for a Tibetan character sample image the first level approximation component of the Haar wavelet transform is calculated.Secondly the approximation component is partitioned into several equal-sized zones. Finally the gradient direction histograms of each zone are calculated and the local direction histograms of the approximation component are considered as the features of the character sample image.The proposed method is tested on the recently developed off-line Tibetan handwritten character sample database.The experimental results demonstrate the effectiveness and efficiency of the proposed feature extraction method.Furthermore compared with the detail components the approximation component contributes more to the recognition accuracy.为了提高脱机手写藏文字符的识别效果,提出了一种在小波变换基础上计算局部梯度方向直方图的特征提取方法.首先,对一个脱机手写藏文字符样本图像进行一次Haar小波变换,得到相应的一级近似分量;然后,将这个一级近似分量划分成几个等尺寸的子区域;最后,计算每个等尺寸子区域的局部梯度方向直方图,并将所有子区域的全部局部梯度方向直方图的值作为该字符图片的特征.在最近建立的脱机手写藏文字符样本数据库(THCDB)上的实验结果表明:提出的特征提取方法识别效率较高,且识别效果较好;和细节分量相比,近似分量对提高识别精度具有更大的贡献.

关 键 词:pattern recognition wavelet transform gradient direction TIBETAN handwritten character 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象