An investigation on terahertz response in electro-optic crystals excited at 1.03 lm wavelength  

An investigation on terahertz response in electro-optic crystals excited at 1.03 lm wavelength

在线阅读下载全文

作  者:Congwen Luo Zhenyu Zhao Wangzhou Shi Zhizhan Chen 

机构地区:[1]Department of Physics,Shanghai Normal University

出  处:《Chinese Science Bulletin》2014年第11期1187-1191,共5页

基  金:supported by the National Natural Science Foundation of China(61307130);National Basic Research Program of China(2012CB326402);Innovation Program of Shanghai Municipal Education Commission(14YZ077);Innovation Group(DXL121);Starting Funding from Shanghai Normal University(A-3501-13-002006)

摘  要:We theoretically investigate terahertz(THz)emission and detection from h110i-oriented electro-optic(EO) crystals adapted for Yb-doped femtosecond pulse laser.According to the principles of phase-matching condition, the dispersion relation between optical velocity and THz pulse,THz absorption spectra, and coherence lengths of CdTe, GaP,and GaAs crystals below the phonon resonant frequency are calculated correspondingly. The optical rectification and EO sampling process of above crystals with the same thickness of0.1 mm are simulated. As a consequence, we found that the optimal emission frequency of CdTe is at 2.65 THz, however,it reaches 6.56 THz of GaAs and 4.77 THz of GaP. With the help of frequency response function, the calculated cut-off frequency of CdTe is only 3.45 THz, while GaAs and GaP achieve 7.15 and 6.37 THz correspondingly. Finally, the EO sampling sensitivity of GaAs is higher than CdTe and GaP when the crystal's thickness exceeds 1.58 mm. The strong THz absorption of CdTe saturates distinctly the EO sampling sensitivity with its thickness increasing.We theoretically investigate terahertz (THz) emission and detection from (ll0)-oriented electro-optic (EO) crystals adapted for Yb-doped femtosecond pulse laser. According to the principles of phase-matching condition, the dispersion relation between optical velocity and THz pulse, THz absorption spectra, and coherence lengths of CdTe, GaP, and GaAs crystals below the phonon resonant frequency are calculated correspondingly. The optical rectification and EO sampling process of above crystals with the same thickness of 0.1 mm are simulated. As a consequence, we found that the optimal emission frequency of CdTe is at 2.65 THz, however, it reaches 6.56 THz of GaAs and 4.77 THz of GaP. With the help of frequency response function, the calculated cut-off frequency of CdTe is only 3.45 THz, while GaAs and GaP achieve 7.15 and 6.37 THz correspondingly. Finally, the EO sampling sensitivity of GaAs is higher than CdTe and GaP when the crystal's thickness exceeds 1.58 mm. The strong THz absorption of CdTe saturates distinctly the EO sampling sensitivity with its thickness increasing.

关 键 词:太赫兹脉冲 电光晶体 GAAS晶体 兴奋 飞秒脉冲激光 相位匹配条件 采样过程 频率响应函数 

分 类 号:TN21[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象