应用样条插值提高GRAPES模式物理过程反馈精度  被引量:5

Application of Spline Interpolation to Physical Process Feedback Accuracy Improvement of GRAPES Model

在线阅读下载全文

作  者:苏勇[1,2,3] 沈学顺[3] 张倩[4] 刘俊杰[5] 

机构地区:[1]中国气象科学研究院,北京100081 [2]南京信息工程大学大气科学学院,南京210044 [3]中国气象局数值预报中心,北京100081 [4]中国气象局气象宣传与科普中心,北京100081 [5]南京信息工程大学水文气象学院,南京210044

出  处:《应用气象学报》2014年第2期202-211,共10页Journal of Applied Meteorological Science

基  金:"十二五"国家科技支撑计划(2012BAC22B01);公益性行业(气象)科研专项(GYHY201006013);国家自然科学基金项目(41275103;41375108;41205078);国家自然科学基金创新研究群体科学基金项目(4092103);江苏省普通高校研究生科研创新计划(CXLX12_0491)

摘  要:GRAPES(Global/Regional Assimilation and PrEdiction System)模式动力框架中垂直方向变量的跳层设置采用Charney-Phillips分布,在整层上进行位温、水物质的计算,物理过程中在半层上对其进行处理。这样在GRAPES模式中,进入物理过程之前和物理过程计算完毕之后,都要采用线性插值进行整层和半层之间物理量的转换。由于线性插值精度欠佳,为提高上述反馈过程的精度,并保证水物质的正定性。该研究引入样条插值,并在水物质的插值过程中进行保单调处理,有效减小了位温场、水物质场的预报偏差,并提升了模式的综合预报性能。The variable distribution in the vertical direction of GRAPES model's dynamic core adopts Charney- Phillips method. Vertical velocity, potential temperature, water substance are calculated at the whole layer, horizontal velocity and dimensionless pressure are calculated at the half layer, but in physical process, all the variables are placed on the half layer. In order to satisfy the needs of the central difference calculations and better representation of the physical processes in the boundary layer, a nonuniform stratification is adopted, which is dense near the ground, and the higher the more sparse. Therefore, in GRAPES model, linear interpolation is needed to convert variables between whole and half layers before and after the physical process calculation. For the weather prediction model of various international centers, Lorenz layers are used in the physical part and all the variables are on the half layer. Most models also use Lorenz layers in the dynamic core, except for the Unified Model of the UK Meteorological Office, which chooses Charney-Philips layer for dynamic core and uses linear interpolation in dealing with the similar problem of interpolation between whole and half layers. Linear interpolation is relatively simple, but the accuracy is not high, and it will cause deviation especially for lower and higher layers. The cumulative deviation in the temperature and humidity fields will further impact the height and wind fields. In addition, the interpolation process of water substance is also re- quired to ensure monotonic, but the traditional cubic spline interpolation, polynomial interpolation, cannot be guaranteed monotonic, which will bring negative water, instability and other issues. In order to solve the problems above, the traditional cubic spline interpolation method is introduced for potential temperature interpolation in GRAPES model. After some special handling of the boundary value based on the traditional one, a monotonic cubic spline interpolation method is established for water s

关 键 词:GRAPES模式 线性插值 样条插值 单调 

分 类 号:P401[天文地球—大气物理学与大气环境]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象