检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院大学管理学院,北京100190 [2]中山大学岭南学院,广州510275
出 处:《系统工程理论与实践》2014年第4期892-898,共7页Systems Engineering-Theory & Practice
基 金:国家自然科学基金(71301160;71303264);中国博士后科学基金(2012M520420)
摘 要:工具变量估计是解决模型内生性问题的基本方法,但其有限样本表现对工具变量的选取十分敏感.近年来,对于"多工具变量"模型,文献中提出了基于近似最小均方误差的工具变量选取方法来解决这一问题,但这些方法或依赖于工具变量的排序,或受限于工具变量的数目.本文采用基于模拟退火算法的工具变量选取方法很好地克服了这些缺陷.Monte Carlo模拟结果表明该算法有效可行.Instrumental variables estimation provides a general solution to the problem of an endogenous explanatory variable, but the finite sample properties of instrumental variable estimators are sensitive to the choice of instruments. In recent years, several approaches based on minimizing the approximate mean square error have been proposed in the literature for the models with many instruments. However, these methods either depend on the order of the instruments or are limited by the number of instruments. In this paper, the selection method of instruments based on simulated annealing algorithm is proposed to solve these problems. Monte Carlo simulations have demonstrated the effectiveness of the proposed algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15