检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王青平[1] 赵宏宇[1] 吴微微[1] 付云起[1] 袁乃昌[1]
机构地区:[1]国防科技大学电子科学与工程学院,长沙410000
出 处:《电子与信息学报》2014年第4期1003-1007,共5页Journal of Electronics & Information Technology
基 金:国家自然科学基金(60871069);新世纪优秀人才支持计划(NCET-10-0894)资助课题
摘 要:传统基于马尔可夫随机场(MRF)的贝叶斯分割方法由于只考虑邻域像素点的先验影响,无法有效抑制相干斑噪声;边缘区域分割效果欠佳,因为先验模型假定邻域中每个像素对中心像素的影响相同。因而,该文提出一种融合局部和非局部信息的自适应贝叶斯分割方法。针对SAR图像中的相干斑噪声模型,引入基于比率概率的相似性测度,用非局部相似像素块指导当前像素点的分割;并且采用变分系数(Coefficient of Variation,CV)方法获取边缘区域图像模板,在边缘区域自适应地调整定义的结构指数以及搜索窗尺寸,从而改善分割过度平滑与结构保持的矛盾;在实验分析中,利用新方法对部分图像进行了分割实验,并与传统方法作了比较。改进方法的分割结果形状更为准确,不但抑制了相干斑噪声,还有效保持了细节特征,具有显著优势。With only considering the impact of neighborhood pixels, the traditional Bayesian segmentation method based on Markov Random Field (MRF) can not suppress the speckle noise effectively. In the traditional priori model, the influence of each pixel within the neighborhood to the center one is assumed the same, which makes the description of the edge imprecise and the segmentation ineffective. Thus, an adaptive Bayesian segmentation method fused of local and non-local information is proposed. For the multiplicative noise model contained in SAR image, the similarity measure based on ratio probability is introduced, and the nonlocal similar pixel-blocks are adopted to guide the segmentation of the current pixel. Furthermore, the Coefficient of Variation (CV) method is employed to obtain the image template of edge area. In the edge region, the structure index and the size of search window are adaptively adjusted to improve the inconsistency between excessive smooth and structure preserving. In the experimental analysis, parts of the SAR image segmentation results with the new technique are given, which are compared with the traditional means. There is a significant advantage that the proposed algorithm enables more accurate segmentation results, which not only make the speckle noise suppressed, but also keep the detail characteristics effectively.
关 键 词:SAR图像 非局部空间信息 自适应搜索窗 相似性测度 贝叶斯分割 边缘区域矫正
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198