机构地区:[1]Department of Environmental Engineering, School of Resource and Environmental Sciences, Wuhan University [2]State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University [3]State Key Laboratory of Organic Geochemistry,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences
出 处:《Journal of Environmental Sciences》2014年第4期810-817,共8页环境科学学报(英文版)
基 金:supported by the Natural Science Foundation of China(No.41103061);the Doctoral Fund Project of the Ministry of Education of China(No.20110141120015);the National Basic Research Programme(973)of China(No.2011CB707106)
摘 要:In January 2013, a long-lasting severe haze episode occurred in Northern and Central China; at its maximum, it covered a land area of approximately 1.4 million km2. In Wuhan, the largest city in Central China, this event was the most severe haze episode in the 21st century. Aerosol samples of submicron particles (PMI.o) were collected during the long-lasting haze episode at an urban site and a suburban site in Wuhan to investigate the ion characteristics of PMi.0 in this area. The mass concentrations of PM1.0 and its water-soluble inorganic ions (WSIIs) were almost at the same levels at two sites, which indicates that PM1.0 pollution occurs on a regional scale in Wuhao. WSIIs (Na^+, NH4^+, K^+, Mg^2+, Ca^2+, Cl^-, NO3 and SO2-) were the dominant chemical species and constituted up to 48.4% and 47.4% of PM1.0 at WD and TH, respectively. The concentrations of PM1.0 and WSIIs on haze days were approximately two times higher than on normal days. The ion balance calculations indicate that the particles were more acidic on haze days than on normal days. The results of the back trajectory analysis imply that the high concentrations of PM1.0 and its water-soluble inorganic ions may be caused by stagnant weather conditions in Wuhan.In January 2013, a long-lasting severe haze episode occurred in Northern and Central China; at its maximum, it covered a land area of approximately 1.4 million km2. In Wuhan, the largest city in Central China, this event was the most severe haze episode in the 21st century. Aerosol samples of submicron particles (PMI.o) were collected during the long-lasting haze episode at an urban site and a suburban site in Wuhan to investigate the ion characteristics of PMi.0 in this area. The mass concentrations of PM1.0 and its water-soluble inorganic ions (WSIIs) were almost at the same levels at two sites, which indicates that PM1.0 pollution occurs on a regional scale in Wuhao. WSIIs (Na^+, NH4^+, K^+, Mg^2+, Ca^2+, Cl^-, NO3 and SO2-) were the dominant chemical species and constituted up to 48.4% and 47.4% of PM1.0 at WD and TH, respectively. The concentrations of PM1.0 and WSIIs on haze days were approximately two times higher than on normal days. The ion balance calculations indicate that the particles were more acidic on haze days than on normal days. The results of the back trajectory analysis imply that the high concentrations of PM1.0 and its water-soluble inorganic ions may be caused by stagnant weather conditions in Wuhan.
关 键 词:PM1.0 water-soluble inorganic ions haze source back trajectory
分 类 号:X513[环境科学与工程—环境工程] TQ172.715[化学工程—水泥工业]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...