On the first eigenvalue of Finsler manifolds with nonnegative weighted Ricci curvature  被引量:2

On the first eigenvalue of Finsler manifolds with nonnegative weighted Ricci curvature

在线阅读下载全文

作  者:YIN SongTing HE Qun SHEN YiBing 

机构地区:[1]Department of Mathematics,Tongji University [2]Department of Mathematics and Computer Science,Tongling University [3]Department of Mathematics,Zhejiang University

出  处:《Science China Mathematics》2014年第5期1057-1070,共14页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant No.11171253);the Natural Science Foundation of Ministry of Education of Anhui Province(Grant No.KJ2012B197)

摘  要:We prove that for a compact Finsler manifold M with nonnegative weighted Ricci curvature,if its first closed(resp.Neumann)eigenvalue of Finsler-Laplacian attains the sharp lower bound,then M is isometric to a circle(resp.a segment).Moreover,a lower bound of the first eigenvalue of Finsler-Laplacian with Dirichlet boundary condition is also estimated.These generalize the corresponding results in recent literature.We prove that for a compact Finsler manifold M with nonnegative weighted Ricci curvature,if its first closed(resp. Neumann) eigenvalue of Finsler-Laplacian attains the sharp lower bound,then M is isometric to a circle(resp. a segment). Moreover,a lower bound of the first eigenvalue of Finsler-Laplacian with Dirichlet boundary condition is also estimated. These generalize the corresponding results in recent literature.

关 键 词:Finsler-Laplacian the first eigenvalue Ricci curvature S curvature 

分 类 号:O186.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象