基于遗传神经网络方法的流动不稳定起始点研究  被引量:3

Study on Onset of Flow Instability by Genetic Neural Network

在线阅读下载全文

作  者:李精精[1] 周涛[1] 段军[1] 肖泽军[2] 黄彦平[2] 

机构地区:[1]华北电力大学核热工安全与标准化研究所,北京102206 [2]中国核动力研究设计院中核核反应堆热工水力技术重点实验室,成都610041

出  处:《核动力工程》2014年第2期63-66,共4页Nuclear Power Engineering

基  金:国家自然科学基金(50976033);华北电力大学校内"211"基金(X10011);中国核动力研究设计院中核核反应堆热工水力技术重点实验室基金(9140C7101030905)

摘  要:利用遗传神经网络(GNN)方法分析窄矩形通道内流动不稳定起始点(OFI),并检测其热流密度随各个系统参数的变化。检测结果显示,GNN的预测结果与实验值符合良好,误差在±10%范围内。进一步通过GNN模型预测各个系统参数对OFI的影响。结果显示:OFI点的热流密度随着系统压力、入口过冷度、质量流速的增加而增大;系统压力对OFI点热流密度的影响小于质量流速的影响,小于入口过冷度的影响。The trend of OFI heat flux with the system parameters is studied by the method of genetic neural network. The test result shows that the results of GNN agree well with the results of experiments. The errors fall in the limits of +10%. By using the GNN model to predict the effect of parameters on OFI, we can find that the heat flux of OFI grows with the increasing of system pressure, the inlet subcooled temperature and the mass flow. The effect of system pressure on OFI is smaller than that of the mass flow and the inlet subcooled temperature.

关 键 词:流动不稳定起始点 流动不稳定性 遗传神经网络 

分 类 号:TL33[核科学技术—核技术及应用]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象