Multimodal spontaneous affect recognition using neural networks learned with hints  

Multimodal spontaneous affect recognition using neural networks learned with hints

在线阅读下载全文

作  者:张欣 吕坤 

机构地区:[1]School of Software,Beijing Institute of Technology

出  处:《Journal of Beijing Institute of Technology》2014年第1期117-125,共9页北京理工大学学报(英文版)

基  金:Supported by the National Natural Science Foundation of China(60905006);the Basic Research Fund of Beijing Institute ofTechnology(20120842006)

摘  要:A multimodal fusion classifier is presented based on neural networks (NNs) learned with hints for automatic spontaneous affect recognition. In case that different channels can provide com- plementary information, features are utilized from four behavioral cues: frontal-view facial expres- sion, profile-view facial expression, shoulder movement, and vocalization (audio). NNs are used in both single cue processing and multimodal fusion. Coarse categories and quadrants in the activation- evaluation dimensional space are utilized respectively as the heuristic information (hints) of NNs during training, aiming at recognition of basic emotions. With the aid of hints, the weights in NNs could learn optimal feature groupings and the subtlety and complexity of spontaneous affective states could be better modeled. The proposed method requires low computation effort and reaches high recognition accuracy, even if the training data is insufficient. Experiment results on the Semaine nat- uralistic dataset demonstrate that our method is effective and promising.A multimodal fusion classifier is presented based on neural networks (NNs) learned with hints for automatic spontaneous affect recognition. In case that different channels can provide com- plementary information, features are utilized from four behavioral cues: frontal-view facial expres- sion, profile-view facial expression, shoulder movement, and vocalization (audio). NNs are used in both single cue processing and multimodal fusion. Coarse categories and quadrants in the activation- evaluation dimensional space are utilized respectively as the heuristic information (hints) of NNs during training, aiming at recognition of basic emotions. With the aid of hints, the weights in NNs could learn optimal feature groupings and the subtlety and complexity of spontaneous affective states could be better modeled. The proposed method requires low computation effort and reaches high recognition accuracy, even if the training data is insufficient. Experiment results on the Semaine nat- uralistic dataset demonstrate that our method is effective and promising.

关 键 词:affect recognition multimodal fusion neural network learned with hints spontaneousaffect 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象