检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘先珊[1,2] 张林[3] 秦鹏伟 刘洋[1,2] 李栋梁[1,2]
机构地区:[1]重庆大学土木工程学院 [2]山地城镇建设与新技术教育部重点实验室,重庆400045 [3]重庆市电力公司,重庆400015
出 处:《土木建筑与环境工程》2014年第2期28-34,共7页Journal of Civil,Architectural & Environment Engineering
基 金:重庆市自然科学基金(cstc2012jjA90005);国家重点基础研究发展计划(2014CB04690x);武汉大学水资源与水电工程科学国家重点实验室开放基金(2012B100);中央高校基本科研业务费(106112013CDJZR00004);国家自然科学基金(51109231)
摘 要:储层砂岩是由砂岩颗粒胶结而成的沉积岩,同一区域的物性特征不尽相同,油藏开采时的地层响应和出砂也会有差异。以2种不同的储层砂岩为研究对象,基于柱坐标系的三维颗粒流数值模型,模拟射孔围压和油藏流速一定时的砂岩宏细观力学响应,分析出砂的发生和发展过程。砂岩的宏观应力曲线表明砂岩颗粒间的弱胶结性越弱,胶结物质含量越少,砂岩越容易屈服破坏,出砂越容易。砂岩的黏结应力分布同样说明储层的砂岩颗粒越小、胶结含量和胶结程度越小,离散的颗粒越多,颗粒接触上的受力越大,砂岩破坏越严重,出砂的几率越大;同时,颗粒的位移和旋转也说明胶结物质对储层砂岩力学特性和出砂的影响较大,与上述研究成果一致。储层开采中,不同物性的储层砂岩力学响应不同,出砂特性有差异,需要针对实际的储层物性和赋存环境,采用适宜的出砂预测方法和防砂手段。The reservoir sandstone is the sedimentary rock with many cemented sand particles. The different physical property of the reservoir even in the same area results in different mechanical response and sand production of the sandstone. Taking two types of the reservoir sandstones as research subjects, a numerical model based on 3-Dimensional Particle-based Distinct Element (PFC3D) under cylindrical coordinate system was used to simulate the micro-micro response of the sandstone considering the given confining pressure and the oil flow rate. Meanwhile, the sanding initiation and the process of the development were analyzed. The macro stress indicated that the reservoir sandstones with weaker cemented sand particles and less percent of the cemented materials would yield and fail more easily, the sand production was initiated more easily as well. Meanwhile, the stress of the parallel bonds indicated that the reservoir sandstones with granule and ess cemented materials dislodged from the sandstone more easily, and the force on the particle contact was arger and the sandstone failure was more serious. Hence, the probability of the dislodged particles flowing into the wellbore was also much more. In addition, the particle displacement and rotation indicated that the physical property of the sandstone played a significant influence on the mechanical response and the sand production, the results also agreed with the above results. Therefore, the sand mechanical response and sand production of reservoir sandstone are both different due to different physical property of the reservoir. As a result, the reliable measures of the sand prediction and sand control will be adopted based on the reservoir physical property and conditions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222