机构地区:[1]Institute of Energy and Environmental Protection, Chinese Academy of Agricultural Engineering [2]Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture/Chinese Academy of Agricultural Engineering [3]College of Resources and Environmental Sciences, China Agricultural University
出 处:《Journal of Integrative Agriculture》2014年第3期533-540,共8页农业科学学报(英文版)
基 金:supported by the National Natural Science Foundation of China (41171211);the Special Fund for Agro-Scientific Research in the Public Interest, China (201303095-2)
摘 要:Biochar is increasingly proposed as a soil amendment, with reports of benefits to soil physical, chemical and biological properties. In this study, different biochars were produced from 6 feedstocks, including straw and poultry manure, at 3 pyrolysis temperatures (200, 300 and 500℃) and then added separately to a calcareous soil. Their effects on soil properties and maize growth were evaluated in a pot experiment. The biochars derived from crop straw had much higher C but smaller N concentrations than those derived from poultry manure. Carbon concentrations, pH and EC values increased with increasing pyrolysis temperature. Biochar addition resulted in increases in mean maize dry matter of 12.73% and NPK concentrations of 30, 33 and 283%, respectively. Mean soil pH values were increased by 0.45 units. The biochar-amended soils had 44, 55, 254 and 537% more organic C, total N, Olsen-P and available K, respectively, than the control on average. Both feedstocks and pyrolysis temperature determined the characteristics of the biochar. Biochars with high mineral concentrations may act as mineral nutrient supplements.Biochar is increasingly proposed as a soil amendment, with reports of benefits to soil physical, chemical and biological properties. In this study, different biochars were produced from 6 feedstocks, including straw and poultry manure, at 3 pyrolysis temperatures (200, 300 and 500℃) and then added separately to a calcareous soil. Their effects on soil properties and maize growth were evaluated in a pot experiment. The biochars derived from crop straw had much higher C but smaller N concentrations than those derived from poultry manure. Carbon concentrations, pH and EC values increased with increasing pyrolysis temperature. Biochar addition resulted in increases in mean maize dry matter of 12.73% and NPK concentrations of 30, 33 and 283%, respectively. Mean soil pH values were increased by 0.45 units. The biochar-amended soils had 44, 55, 254 and 537% more organic C, total N, Olsen-P and available K, respectively, than the control on average. Both feedstocks and pyrolysis temperature determined the characteristics of the biochar. Biochars with high mineral concentrations may act as mineral nutrient supplements.
关 键 词:BIOCHAR FEEDSTOCK temperature MAIZE soil
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...