检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mathematics and Statistics,Wuhan University
出 处:《Acta Mathematica Scientia》2014年第2期387-393,共7页数学物理学报(B辑英文版)
基 金:supported by the National Science Foundation of China NSFC(11161044,11131005)
摘 要:It is well known that the commutator Tb of the Calderbn-Zygmund singular integral operator is bounded on LP(Rn) for 1 〈 p 〈 +∞ if and only if b E BMO [1]. On the other hand, the commutator Tb is bounded from H1(Rn) into L1(Rn) only if the function b is a constant [2]. In this article, we will discuss the boundedness of commutator of certain pseudo-differential operators on Hardy spaces H1. Let Tσ be the operators that its symbol is Sσ1,δ with 0 ≤δ〈 1, if b ∈ LMO∞, then, the commutator [b, Tσ] is bounded from H1(Rn) into L1(Rn) and from L∞(Rn) into BMO(Rn); If [b,Tσ] is bounded from H1(Rn) into L1(Rn) or L1(Rn) into BMO(Rn), then, b ∈ LMOtoc.It is well known that the commutator Tb of the Calderbn-Zygmund singular integral operator is bounded on LP(Rn) for 1 〈 p 〈 +∞ if and only if b E BMO [1]. On the other hand, the commutator Tb is bounded from H1(Rn) into L1(Rn) only if the function b is a constant [2]. In this article, we will discuss the boundedness of commutator of certain pseudo-differential operators on Hardy spaces H1. Let Tσ be the operators that its symbol is Sσ1,δ with 0 ≤δ〈 1, if b ∈ LMO∞, then, the commutator [b, Tσ] is bounded from H1(Rn) into L1(Rn) and from L∞(Rn) into BMO(Rn); If [b,Tσ] is bounded from H1(Rn) into L1(Rn) or L1(Rn) into BMO(Rn), then, b ∈ LMOtoc.
关 键 词:Hardy space COMMUTATOR Pseudo-differential operator LMO space
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.82.12