检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]新乡学院计算机与信息工程学院,河南新乡453003
出 处:《测控技术》2014年第4期30-34,共5页Measurement & Control Technology
基 金:河南省科技攻关计划项目(122102210407);河南省科技厅基础与前沿技术研究项目(132300410204)
摘 要:为降低多媒体传感器网络中视频压缩感知的计算复杂度,提出一种基于帧分类的多媒体传感器网络视频联合重构算法。依据视频数据的联合稀疏模型将视频帧分为关键帧和非关键帧。对于压缩感知重构中欠定线性方程组,可利用关键帧和非关键帧之间的相关边信息进行重构初始化,同时运用有界约束二次规划对其进行求解。从仿真结果可知,相对于传统的视频压缩感知算法而言,在保证视频重构质量的前提下,所提方法在重构算法复杂度上不但能有效降低,同时,在视频重构上能提高其实时性。For reducing the computation complexity of compressed sensing (CS) based video recovery algorithm in multimedia sensor networks, a frame classification based joint recovery algorithm is proposed. The frames of network video are classified into two types, which are key frames and non-key frames, and the side information between two types of frames can be used in initialization of recovery. The under-determined linear equations in CS recovery are solved by bound-constrained quadratic programming. Simulation results demonstrate that the proposed algorithm can significantly reduce the complexity while the accuracy of recovery is ensured, thus im- prove the real-time performance of video recovery in multimedia sensor networks.
分 类 号:TN919[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63