Void Closure Behavior in Large Diameter Steel Rod during H-V Rolling Process  被引量:1

Void Closure Behavior in Large Diameter Steel Rod during H-V Rolling Process

在线阅读下载全文

作  者:Hua-gui HUANG Yong LIU Feng-shan DU Lei CHEN 

机构地区:[1]National Engineering Research Center for Equipment and Technology of Cold Strip Rolling,Yanshan University

出  处:《Journal of Iron and Steel Research International》2014年第3期287-294,共8页

基  金:Sponsored by National Natural Science Foundation of China(51005197,51101136)

摘  要:In order to reveal the mechanism and condition of void closure in large diameter steel rod during horizontal- vertical (H-V) groove rolling process, a three-dimensional thermomechanicaily coupled finite element model was es- tablished for 9-stand H-V groove rolling process aiming at a 4150 mm steel rod production line. A spherical hole with diameter from 2 to 10 mm was preset into the center of continuous casting billet with a rectangle cross section of 300 mmX 360 mm in this model to simulate the void defect, and then finite element analyses were carried out to observe and quantify the void shape evolution in each pass on the three orthogonal coordinate plane sections. The re- suits showed that the void was formed roughly in the reduction and extension directions, and crushed gradually from spherical shape to an approximate ellipsoid, micro-crack and finally to be closed. A quantitative analysis was carried out by using elliptic radii and closure ratio to describe this evolution process; it indicated that the longest axis of the ellipsoid coincided with the rolling line, and the second and third axes were alternatively ihorizontal and vertical on the exit cross section according to change of the reduction direction in H-V groove. The void closure behavior during H- V rolling was more complicated than that of common horizontal rolling, and the influence of groove type and the ex- tension coefficient on the void closure ratio was presented. Finally, a pilot rolling experiment was performed on a 5- stand H-V experimental mill to verify the numerical simulation results, and the experimental results are in good agree- ment with the numerical simulation results.In order to reveal the mechanism and condition of void closure in large diameter steel rod during horizontal- vertical (H-V) groove rolling process, a three-dimensional thermomechanicaily coupled finite element model was es- tablished for 9-stand H-V groove rolling process aiming at a 4150 mm steel rod production line. A spherical hole with diameter from 2 to 10 mm was preset into the center of continuous casting billet with a rectangle cross section of 300 mmX 360 mm in this model to simulate the void defect, and then finite element analyses were carried out to observe and quantify the void shape evolution in each pass on the three orthogonal coordinate plane sections. The re- suits showed that the void was formed roughly in the reduction and extension directions, and crushed gradually from spherical shape to an approximate ellipsoid, micro-crack and finally to be closed. A quantitative analysis was carried out by using elliptic radii and closure ratio to describe this evolution process; it indicated that the longest axis of the ellipsoid coincided with the rolling line, and the second and third axes were alternatively ihorizontal and vertical on the exit cross section according to change of the reduction direction in H-V groove. The void closure behavior during H- V rolling was more complicated than that of common horizontal rolling, and the influence of groove type and the ex- tension coefficient on the void closure ratio was presented. Finally, a pilot rolling experiment was performed on a 5- stand H-V experimental mill to verify the numerical simulation results, and the experimental results are in good agree- ment with the numerical simulation results.

关 键 词:large diameter steel rod continuous casting billet H-V groove rolling~ void closure FEM 

分 类 号:TG335[金属学及工艺—金属压力加工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象