机构地区:[1]College of Food Science, Fujian Agriculture and Forestry University [2]Institute of Food Science and Technology,Fujian Agriculture and Forestry University [3]Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch
出 处:《Chinese Journal of Structural Chemistry》2014年第4期647-653,共7页结构化学(英文)
基 金:Supported by the Cooperation in Production,Study and Research of Science and Technology Major Projects of Fujian Province(2012N5004);the Natural Science Foundation of Fujian Province(2012J01081);the Scientific and Technological Innovation Team Support Plan of Institution of Higher Learning in Fujian Province([2012]03);the Scientific and Technological Innovation Team Support Plan of Fujian Agriculture and Forestry University(cxtd12009)
摘 要:Lotus seed starch (15%, w/w) was subjected to ultra-high pressure (UHP) at 500 MPa for 10~60 min. The effects of UHP on the structural, pasting, and thermal properties of starch were investigated using solid-state 13C CP/MAS NMR, differential scanning calorimetry (DSC), HPSEC-MALLS-RI, and a rapid visco analyzer. The 13C CP/MAS NMR results revealed a reduction in the relative crystallinity and peak intensity of the crystalline state with increasing the UHP time. The molecular weight of native starch was 1.433 × 107 Da, which was higher than that of the UHP-treated starch. Viscograms of UHP-treated starch revealed an increase in paste viscosity, peak time, and pasting temperature and a reduction in breakdown and setback viscosity compared to the native starch. Furthermore, the DSC results showed a reduction in gelatinization temperature and gelatinization enthalpy with increasing the UHP time.Lotus seed starch (15%, w/w) was subjected to ultra-high pressure (UHP) at 500 MPa for 10~60 min. The effects of UHP on the structural, pasting, and thermal properties of starch were investigated using solid-state 13C CP/MAS NMR, differential scanning calorimetry (DSC), HPSEC-MALLS-RI, and a rapid visco analyzer. The 13C CP/MAS NMR results revealed a reduction in the relative crystallinity and peak intensity of the crystalline state with increasing the UHP time. The molecular weight of native starch was 1.433 × 107 Da, which was higher than that of the UHP-treated starch. Viscograms of UHP-treated starch revealed an increase in paste viscosity, peak time, and pasting temperature and a reduction in breakdown and setback viscosity compared to the native starch. Furthermore, the DSC results showed a reduction in gelatinization temperature and gelatinization enthalpy with increasing the UHP time.
关 键 词:lotus seed Starch ultra-high pressure molecular weights pasting properties thermal properties
分 类 号:TS231[轻工技术与工程—粮食、油脂及植物蛋白工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...