Construction of Photoresponsive Supramolecular Micelles Based on Ethyl Cellulose Graft Copolymer  被引量:2

Construction of Photoresponsive Supramolecular Micelles Based on Ethyl Cellulose Graft Copolymer

在线阅读下载全文

作  者:Chun-mei Jian Bo-wen Liu Xi Chen Si-tong Zhou Tommy Fang 袁金颖 

机构地区:[1]Key Lab of Organic Optoelectronic & Molecular Engineering of Ministry of Education, Department of Chemistry,Tsinghua University

出  处:《Chinese Journal of Polymer Science》2014年第6期690-702,共13页高分子科学(英文版)

基  金:financially supported by the National Natural Science Foundation of China(Nos.21174076 and 21374053);the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20120002110015)

摘  要:In this work, a UV-Visible light controlled supramolecular system based on ethyl cellulose (EC) was constructed, combining the host-guest interaction of β-cyclodextrin (β-CD) group and trans-isomer of azobenzene (tAzo) group. To link β-CD to the hydrophobic section, renewable EC was used as macroinitiator to initiate the polymerization of ε-caprolactone (ε-CL) to form biocompatible and biodegradable comb copolymer EC-g-PCL, and β-CD was attached to the end of PCL side chain via click reaction. Meanwhile, hydrophilic PEG-tAzo was obtained by N,N'-dicyclohexylcarbodiimide (DCC) coupling. Then, the structures of the products were characterized by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). Subsequently, with the formation of inclusion complexes by β-CD and tAzo groups, the obtained EC-g-PCL-β-CD/PEG-tAzo supramolecular system self-assembled in water with hydrophobic EC-g-PCL-β-CD as core and hydrophilic PEG-tAzo as shell. Furthermore, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were utilized to investigate the particle size and size distribution, while NMR and UV-Vis spectra were applied to explore the UV-Visible light stimuli-responsiveness of the micelles.In this work, a UV-Visible light controlled supramolecular system based on ethyl cellulose (EC) was constructed, combining the host-guest interaction of β-cyclodextrin (β-CD) group and trans-isomer of azobenzene (tAzo) group. To link β-CD to the hydrophobic section, renewable EC was used as macroinitiator to initiate the polymerization of ε-caprolactone (ε-CL) to form biocompatible and biodegradable comb copolymer EC-g-PCL, and β-CD was attached to the end of PCL side chain via click reaction. Meanwhile, hydrophilic PEG-tAzo was obtained by N,N'-dicyclohexylcarbodiimide (DCC) coupling. Then, the structures of the products were characterized by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). Subsequently, with the formation of inclusion complexes by β-CD and tAzo groups, the obtained EC-g-PCL-β-CD/PEG-tAzo supramolecular system self-assembled in water with hydrophobic EC-g-PCL-β-CD as core and hydrophilic PEG-tAzo as shell. Furthermore, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were utilized to investigate the particle size and size distribution, while NMR and UV-Vis spectra were applied to explore the UV-Visible light stimuli-responsiveness of the micelles.

关 键 词:Ethyl cellulose Supramolecular system SELF-ASSEMBLY Photoresponse. 

分 类 号:O636.11[理学—高分子化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象