Electrochemical Preparation and Photoelectric Properties of Cu_2O-loaded TiO_2 Nanotube Arrays  被引量:3

Electrochemical Preparation and Photoelectric Properties of Cu_2O-loaded TiO_2 Nanotube Arrays

在线阅读下载全文

作  者:李光亮 梁伟 XUE Jinbo LIU Yiming LIANG Xingzhong 

机构地区:[1]College of Materials Science and Engineering, Taiyuan University of Technology

出  处:《Journal of Wuhan University of Technology(Materials Science)》2014年第1期23-28,共6页武汉理工大学学报(材料科学英文版)

基  金:Funded by the National Natural Science Foundation of China(No.51175363);the Youth Staff Fund of Taiyuan University of Technology(Nos.K201016,K201013);the Specialized Fund for Innovative of College Students of Taiyuan City(No.09122018);the Program for Changjiang Scholar and Innovative Research Team in University(No.IRT0972)

摘  要:TiO2 nanotube (TNT) arrays were fabricated by anodic oxidation of titanium foil in a fluoride- based solution, on which Cu20 particles were loaded via galvanostatic pulse electrodeposition in cupric acetate solutions in the absence of any other additives. The structure and optical properties of Cu2O-loaded TiO2 nanotube arrays (Cu2O-TNTs) were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Vis absorption, and the photoelectrochemical performance was measured using an electrochemical work station with a three-electrode configuration. The results show that the Cu2O particles distribute uniformly on the highly ordered anatase TiO2 nanotube arrays. The morphologies of Cu2O crystals change from branched, truncated octahedrons to dispersive single octahedrons with increasing deposition current densities. The Cu2O- TNTs exhibited remarkable visible light responses with obvious visible light absorption and greatly enhanced visible light photoelectrochemical performance. The I-V characteristics under visible light irradiation show a distinct plateau in the region between approximately -0.3 and 0 V, resulting in higher open-circuit voltages and larger short-circuit currents with increased Cu2O deposition.TiO2 nanotube (TNT) arrays were fabricated by anodic oxidation of titanium foil in a fluoride- based solution, on which Cu20 particles were loaded via galvanostatic pulse electrodeposition in cupric acetate solutions in the absence of any other additives. The structure and optical properties of Cu2O-loaded TiO2 nanotube arrays (Cu2O-TNTs) were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Vis absorption, and the photoelectrochemical performance was measured using an electrochemical work station with a three-electrode configuration. The results show that the Cu2O particles distribute uniformly on the highly ordered anatase TiO2 nanotube arrays. The morphologies of Cu2O crystals change from branched, truncated octahedrons to dispersive single octahedrons with increasing deposition current densities. The Cu2O- TNTs exhibited remarkable visible light responses with obvious visible light absorption and greatly enhanced visible light photoelectrochemical performance. The I-V characteristics under visible light irradiation show a distinct plateau in the region between approximately -0.3 and 0 V, resulting in higher open-circuit voltages and larger short-circuit currents with increased Cu2O deposition.

关 键 词:TiO2 nanotube arrays Cu2O crystals anode oxidation ELECTRODEPOSITION PHOTOCURRENT 

分 类 号:O614.411[理学—无机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象