Prospects of Carboniferous Shale Gas Exploitation in the Eastern Qaidam Basin  被引量:4

Prospects of Carboniferous Shale Gas Exploitation in the Eastern Qaidam Basin

在线阅读下载全文

作  者:LI Yingjie SUN Yanling ZHAO Yan CHANG Chun YU Qingchun MA Yinsheng 

机构地区:[1]School of Water Resources and Environment,China University of Geosciences [2]Institute of Geomechanics,Chinese Academy of Geological Sciences

出  处:《Acta Geologica Sinica(English Edition)》2014年第2期620-634,共15页地质学报(英文版)

基  金:funded by grants from the China Geological Survey program (No. 201201130400003)

摘  要:Shale gas is a resource of emerging importance in the energy field.Many countries in the world have been making big financial investments in this area.Carboniferous shale in the eastern Qaidam Basin shows good exploration prospects,but limited research and exploration work for shale oil and gas resources has been undertaken.Geochemical analyses were performed on shale derived from the Upper Carboniferous Hurleg Formation in the eastern Qaidam Basin,Qinghai Province,and secondary electron imaging capability of a Field Emission scanning electron microscope (FE-SEM) was used to characterize the microstructure of the shale.The reservoir and exploitation potential of the studied shale was assessed by comparison with research results obtained from the Barnett Formation shale in Fort Worth Basin,North America and the Basin shale of Sichuan province.The results indicate that the eastern Qaidam Basin Carboniferous shale is high-quality source rock.There are four major microstructural types in the study area:matrix intergranular pores,dissolution pores,intergranular pores,and micro-fractures.The size of the micropores varies from 6-633 nm,the majority of which is between 39-200 nm,with a relatively small number of micro-scale pores ranging from 0.13-1 μtm.The pore characteristics of the studied shales are similar to the North American and Sichuanese shales,indicating that they have good reservoir potential.No micropores are present in the organic matter,which is induced by its composition; instead we found an important lamellar structure in the organic matter.These micropores and microfractures are abundant,and are connected to natural visible cracks that form the network pore system,which controls the storage and migration of shale gas.This connectivity is favorable for shale gas exploitation,providing great scientific potential and practical value.Shale gas is a resource of emerging importance in the energy field.Many countries in the world have been making big financial investments in this area.Carboniferous shale in the eastern Qaidam Basin shows good exploration prospects,but limited research and exploration work for shale oil and gas resources has been undertaken.Geochemical analyses were performed on shale derived from the Upper Carboniferous Hurleg Formation in the eastern Qaidam Basin,Qinghai Province,and secondary electron imaging capability of a Field Emission scanning electron microscope (FE-SEM) was used to characterize the microstructure of the shale.The reservoir and exploitation potential of the studied shale was assessed by comparison with research results obtained from the Barnett Formation shale in Fort Worth Basin,North America and the Basin shale of Sichuan province.The results indicate that the eastern Qaidam Basin Carboniferous shale is high-quality source rock.There are four major microstructural types in the study area:matrix intergranular pores,dissolution pores,intergranular pores,and micro-fractures.The size of the micropores varies from 6-633 nm,the majority of which is between 39-200 nm,with a relatively small number of micro-scale pores ranging from 0.13-1 μtm.The pore characteristics of the studied shales are similar to the North American and Sichuanese shales,indicating that they have good reservoir potential.No micropores are present in the organic matter,which is induced by its composition; instead we found an important lamellar structure in the organic matter.These micropores and microfractures are abundant,and are connected to natural visible cracks that form the network pore system,which controls the storage and migration of shale gas.This connectivity is favorable for shale gas exploitation,providing great scientific potential and practical value.

关 键 词:Scanning microscopy pore structure organic geochemistry Carboniferous shale gas Hurleg Formation Qinghai-Tibet plateau 

分 类 号:P618.13[天文地球—矿床学] TE122[天文地球—地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象