基于记忆学习法的放疗中呼吸运动预测技术的研究  被引量:5

The Study on Predicting Respiratory Motion via Memory-Based Learning in Radiotherapy

在线阅读下载全文

作  者:万伟权 张慧连 徐子海[3] 贺志强[1] 陈超敏[1] 

机构地区:[1]南方医科大学生物医学工程学院,广州510515 [2]广东新华软件外包有限公司,广州510515 [3]解放军303医院放射治疗中心,南宁530021

出  处:《中国生物医学工程学报》2014年第2期148-154,共7页Chinese Journal of Biomedical Engineering

基  金:广东省重大科技专项(2012A080104010)

摘  要:对胸腹部肿瘤进行实时跟踪放疗时,需要通过预测来补偿系统延迟.然而,由于呼吸运动的复杂性,传统方法难以满足要求.本文应用一种基于记忆学习法进行呼吸预测,该方法首先存储训练数据到记忆中,然后查找相关数据应答当前查询.在此基础上,采用“滑窗法”动态更新训练数据集,并针对预测过程中出现的“病态矩阵”采用脊回归进一步改进算法,使算法的精确性和鲁棒性有了很大提高.实验使用POLARIS红外定位系统采集了10例正常人体表的红外反射标记物的呼吸运动数据样本,平均幅度约为20 mm(9.2 ~37.8 mm),采用改进后的基于记忆学习法(预测步长为1 s),平均绝对误差约为0.3 mm(0.08~0.8 mm),每次估值耗时约1 ms.所提出的方法能够准确和实时捕捉复杂的呼吸运动轨迹.Prediction is necessary to compensate the system latency in the real-time tracking radiation therapy for thoracic and abdominal cancers. However, because of the complexity of the breathing motion, conventional methods are far from clinical requirements. This paper proposed a memory-based learning method to predict respiratory motion. The method stores the training data in memory, then finds relevant data to answer a particular query. Furthermore, the paper adopts dynamic update the training data method and ridge regression aimed at "ill-condition matrix" to greatly improve the accuracy and robustness of the algorithm. Our experiment collected ten respiratory motion data with average amplitude of 20 mm (9.2 - 37.8 mm) from humans' body surface using POLARIS infrared positioning system. Using our methods (prediction horizon is Is), mean absolute error (MAE) was reduced to 0.3 mm (0. 08 - 0.8 mm) , per estimate takes 1 ms. The results confirm that the proposed method is able to capture highly complex breathing movement accurately in real time.

关 键 词:放射治疗 记忆学习法 呼吸运动 实时 预测 

分 类 号:R814[医药卫生—影像医学与核医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象