检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学电气工程学院,四川省成都市610031
出 处:《中国电机工程学报》2014年第13期2188-2195,共8页Proceedings of the CSEE
基 金:国家自然科学基金项目(90610026)~~
摘 要:扰动后系统最低频率预测是电力系统频率安全稳定评估的重要内容。提出一种基于广域量测数据计算扰动后电力系统频率及其最低频率的预测方法。该方法对扰动后的系统进行线性化处理,利用扰动前、后系统的广域量测数据,建立扰动后系统的状态方程。算法中考虑了系统网络、负荷、原动机–调速系统对系统动态频率的影响。使用Arnoldi降阶方法,对系统状态方程进行降阶处理,形成低阶系统。求解降阶后系统的低阶状态方程,计算系统动态频率及最低频率。通过与PSS/E仿真结果比较,证明该算法能够准确、快速计算出扰动后的系统频率及其最低频率。分别使用扰动后25及50 ms时刻的数据,仍能有效地计算出系统频率及最低频率,表明算法具有较好的鲁棒性。The prediction of power system minimum frequency after disturbance is the main content of power system frequency security and stability assessment. With the system data acquired by wide-area measurement system (WAMS), an algorithm predicting the system frequency and its minimum frequency was proposed in this paper. With the linearization of power system after disturbance and the data acquired by WAMS right before and after the disturbance, the system state equation was formed. Amoldi order-reduction method was used to simplify the state equation and the system frequency and its minimum frequency were got by calculation of the order reduced state equation. Compared with the simulation results of PSS/E, it shows that the algorithm proposed can calculate the system frequency and its minimum frequency quickly and accurately. Using the data of 25 ms and 50ms after disturbance respectively, the algorithm could also predict the system frequency and minimum frequency well. It shows that the algorithm is rather robust.
关 键 词:广域量测系统 电力系统扰动 系统频率 最低频率 状态方程 Arnoldi降阶方法
分 类 号:TM74[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38