检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《软件学报》2014年第5期970-983,共14页Journal of Software
基 金:国家自然科学基金(1103133);西安石油大学青年科技创新基金(2012QN011)
摘 要:以一种特殊的粗糙逻辑为研究对象,视全体赋值之集为通常乘积拓扑空间,通过利用赋值集上的Borel概率测度,提出了能融合粗糙逻辑与计量逻辑为一体的公式的Borel型概率粗糙真度理论,给出了公式概率粗糙真度的公理化定义,建立起了相应的概率真度表示定理.公式的概率粗糙真度理论可被看作粗糙逻辑中已有工作的计量化,也可看作计量逻辑学中真度理论的粗糙化.基于这一核心概念,进一步给出了粗糙逻辑中已有概念的程度化表示形式,如公式的粗糙度、精确度、公式之间的粗糙相似度等,并建立起了基于粗糙相似度的3种近似推理模式.该结果实现了粗糙逻辑与计量逻辑的和谐统一,为进一步基于粗糙真值的程度化推理搭建了一个可能的框架.This paper introduces the notion of the Borel probabilistic rough truth degree of a formula in a special kind of rough logic, by employing Borel probability measures on the valuation set endowed with the usual product topology. It facilitates a special form of rough logic with integration to quantitative logic. The axiomatic definition of probabilistie rough truth degree is given and its representation theorem is also presented. The proposed notion of Borel probabilistic rough truth degree can be regarded as the quantitative analysis of rough logic, as well as the advancing research of the existing notion of truth degree from rough set perspective. Based upon the fundamental notion of rough truth degree, some graded versions of the existing notions, including the roughness degree, accuracy degree and the rough similarity degree, are also presented. Subsequently, three different kinds of approximate reasoning models are established. The obtained results achieve a combination of rough logic and quantitative logic and provide a possible framework for rough truth based approximate reasoning.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117